
CS294-6
Reconfigurable Computing

Day 22

November 5, 1998

Requirements for Computing
Systems

(SCORE Introduction)

Previously

• What we need to compute
– Primitive computational elements

• compute, interconnect (time + space)

• How we map onto computational substrate

• What we have to compute
– optimizing work we perform

• generalization

• specialization

– directing computation
• instruction, control

Today

• What do we expect out of a GP computing
systems?

• What have we learned about software
computer systems which aren’t typically
present in hardware?

• SCORE introduction

Desirable (from Day 3)
• We general expect a general-purpose

computing platform to provide:
– Get Right Answers :-)

– Support large computations -> need to
virtualize physical resources

– Software support, programming tools -> higher
level abstractions for programming

– Automatically store/restore programs

– Architecture family --> compatibility across
variety of implementations

– Speed -> … new hardware work faster

Expect from GP Compute?

• Virtualize to solve large problems
– robust degradation?

• Computation defines computation

• Handle dynamic computing requirements
efficiently

• Design subcomputations and compose

Virtualization

• Differ from sharing/reuse?
– Compare segmentation vs. VM

Virtualization

• Functionally
– hardware boundaries not visible to

developer/user

– (likely to be visible performance-wise)

– write once, run “efficiently” on different
physical capacities

How Achieve?

• Exploit Area-Time curves

• Generalize
– local

– instruction select

• Time Slice (virtualize)

• Architect for heavy serialization
– processor, include processor(s) in resource mix

Virtualization Components

• Need to reuse for different tasks
– store

• state

• instruction

– sequence

– select (instruction control)
• predictability

• lead time

• load bandwidth

Handling Virtualization

• Alternatives
– Compile to physical target

• capacities/mix of resources

– Manage physical resources at runtime

Data Dependent Computation

• Cannot reasonably take max over all
possible values
– bounds finite, but unbounded

– pre allocate maximum memory?

• Consequence:
– Computations unfold during execution

– Can be dramatically different based on data
• “shape” of computation differ based on data

Dynamic Creation

• Late bound data
– don’t know parameters until runtime

– don’t know number and types until runtime

• Implications: not known until runtime:
– resources (memory, compute)

– linkage of dataflow

Dynamic Creation

• Handle on Processors/Software
– Malloc => allocate space

– new, higher-order functions
• parameters -> instance

– pointers => dynamic linkage of dataflow

Dynamic Computation Structure

• Selection from defined dataflow
– branching, subroutine calls

• Unbounded computation shape
– recursive subroutines

– looping (non-static/computed bounds)

– thread spawning

• Unknown/dynamic creation
– function arguments

– cons/eval

Composition

• Abstraction is good

• Design independent of final use

• Use w/out reasoning about all
implementation details (just interface)

• Link together subcomputations to build
larger

Composition

• Processor/Software Solution
– packaging

• functions

• classes

• APIs

– assemble programs from pre-developed pieces
• call and sequence

• link data through memory / arguments

• mostly w/out getting inside the pieces

Resources Available

• Vary with
– device/system implementation

– task data characteristics

– co-resident task set

Break
Remaining Assignments

• PROGRAM

• POWER

• Project Summary
– class presentation

SCORE

• An attempt at defining a computational
model for reconfigurable systems
– abstract out

• physical hardware details

• especially size / # of resources

• Goal
– achieve device independence

– approach density/efficiency of raw hardware

– allow application performance to scale based on
system resources (w/out human intervention)

SCORE Basics

• Abstract computation is a dataflow graph
– stream links between operators

– dynamic dataflow rates

• Allow instantiation/modification/destruction
of dataflow during execution
– separate dataflow construction from usage

• Break up computation into compute pages
– unit of scheduling and virtualization

– stream links between pages

• Runtime management of resources

Dataflow Graph

• Represents
– computation sub-blocks

– linkage

• Abstractly
– controlled by data presence

Dataflow Graph Example

Stream Links

• Sequence of data flowing between operators
– e.g. vector, list, image

• Same
– source

– destination

– processing

Operator

• Basic compute unit

• Primitive operators
– single thread of control

– implement basic functions
• FIR, IIR, accumulate

• Provide parameters at instantiation time
– new fir(8,16,{0x01,0x04,0x01})

• Operate from streams to streams

Composition

• Composite Operators: provide hierarchy
– build from other operators

– link up streams between operators
• get interface (stream linkage) right and don’t have to

worry about operator internals

– constituent operators may have independent
control

• May compose operators dynamically

• Composition persists for stream lifetime

Compute Pages

• Primitive operators
– broken into compute pages

• (physical realization)

• Unit of
– control

– scheduling

– virtualization

– reconfiguration

• Canonical example:
– HSRA Subarray (16--1024 BLB subtree)

Hardware Model

Virtual/Physical

• Compute pages virtualized

• Mapped onto physical pages for execution

Compute Page

• Unit of Control
– stall waiting on

• input data present to compute

• output path ready to accept result

– runs together (atomicly)

– partial reconfiguration at this level

Configurable Memory Block

• Physical memory resource
– serves

• compute page configuration/state data

• stream buffers

• mapped memory segments

Stream Links

• Connect up
– compute pages

– compute page and processor / off chip io

• Two realizations
– physical link through network

– buffer in CMB between production and
consumption

Example

Serial Implementation

Spatial Implementation

Dynamic Flow Rates

• Operator not always producing results at
same rate

• data presence
– throttle downstream operator

– prevent write into stream buffer

• output data backup (buffer full)
– throttle upstream operator

• stall page to throttle
– persistent stall, may signal need to swap

Pragmatics

• Processor execute run-time management

• Attn notify processor
– specialization/uncommon case fault

– data stall

• Operator alternatives
– run on processor / array

– different area/time points, superpage blockings

– specializations

• Locking on mapped memory pages

Pragmatics / Cycles

• Cycles spanning pages
– will limit number of cycles can run page before

stalls on its own downstream data

• Limit (short) cycles to page/superpage
– unit guaranteed to be co-resident

– state fine as long as limit to (super)page

• HSRA w/ on-chip DRAM
– 100s of cycles for reconfig.

• Want to be able to run 1000’s of cycles before swap

Alternative Example

Computational Components

Summary

• On to computing systems
– virtualization

– dynamic creation/linkage/composition and
requirements

– composability

• SCORE
– fill out computational model for RC

• capturing additional system features

