
Fast Module Mapping and Placement for Datapaths in FPGAs

Timothy J. Callahan�, Philip Chong, André DeHon, and John Wawrzynek
University of California at Berkeley

Abstract

By tailoring a compiler tree-parsing tool for datapath module
mapping, we produce good quality results for datapath syn-
thesis in very fast run time. Rather than flattening the design
to gates, we preserve the datapath structure; this allows ex-
ploitation of specialized datapath features in FPGAs, retains
regularity, and also results in a smaller problem size. To fur-
ther achieve high mapping speed, we formulate the problem
as tree covering and solve it efficiently with a linear-time dy-
namic programming algorithm. In a novel extension to the
tree-covering algorithm, we perform module placement simul-
taneously with the mapping, still in linear time. Integrating
placement has the potential to increase the quality of the result
since we can optimize total delay including routing delays.

To our knowledge this is the first effort to leverage a grammar-
based tree covering tool for datapath module mapping. Further,
it is the first work to integrate simultaneous placement with
module mapping in a way that preserves linear time complexity.

1 Background

Field programmable gate arrays (FPGAs) consist of con-
figurable logic blocks (CLBs), usually arranged in a 2-
dimensional grid, connected by a programmable interconnec-
tion network. Each CLB contains some amount of combina-
tional logic and typically contains one or more storage ele-
ments. A desired digital circuit can be realized by setting the
configuration of the CLBs and the interconnection network.

Computer-aided design (CAD) tools are indispensable in the
realization of large circuits using FPGAs. Because FPGAs

�Correspondence e-mail address is timothyc@cs.berkeley.edu.
This work is supported in part by DARPA grant DABT63-96-C-0048, ONR
grant N00014-92-J-1617, NSF grant CDA 94-01156, and NSERC Canada.

Appearing in Proc. FPGA’98 Monterey, CA

were originally developed with primarily random logic appli-
cations in mind, these tools typically perform their tasks at the
level of individual gates or Boolean equations. These CAD
tools perform at least three steps: technology mapping, which
partitions the gates into groups that can be implemented in a
single CLB; placement, which assigns each group to a specific
CLB in the array; and routing, which assigns specific routing
resources to form the appropriate nets between CLBs. The tra-
ditional CAD flow performs these tasks separately in the order
described.

As the capacity of FPGAs increases, they are being used more
and more in datapath-intensive applications consisting primar-
ily of multibit logical and arithmetic operations. Unfortunately,
the traditional gate/CLB-level CAD flow performs poorly with
datapath designs. To illustrate, assume we have as input a
dataflow graph (DFG) in which the nodes are multibit op-
erators such as addition. There are several problems with the
direct approach of first implementing each node with a datapath
component, then flattening the datapath components to gates
(discarding information about regularity) and feeding the re-
sulting netlist to the gate-level design flow. Because the place-
ment step often utilizes simulated annealing, it is unlikely that
an efficient bit-slice layout will be rediscovered (Figure 1a).
The generated irregular layout leads to a difficult routing prob-
lem, resulting in long compile times and/or poor results. Also,
flattening to gates leads to a much larger problem size—there
are many times more gates than there are nodes in the DFG.
Since many popular CAD algorithms have greater than linear
complexity, this can lead to a dramatic increase in compilation
time. Finally, once the circuit is flattened to gates, it is usually
not possible to rediscover uses of specialized features of the
CLB such as fast carry chain circuitry.

A better approach for datapath circuits is to map each node
to a prefabricated module (also called a hard macro). This
approach can be fast, and it leads to a regular bit-slice layout.
However, assuming modules with fixed layouts, no optimiza-
tion across module boundaries is performed. As pointed out
by Koch [10], this approach can lead to the underutilization of
FPGA computation resources, especially with coarse-grained
architectures (Figure 1b).

Koch’s Structured Design Implementation [10] addresses this
underutilization problem by performing a module compaction
step after module selection and placement, using standard tools
to optimize one bit slice of the datapath and then tiling the re-

1

(a)

(b)

(c)

Figure 1: Different approaches to implementing datapaths. (a)
Implementing each operation as basic gates and then feeding
to traditional flow. Regularity is lost. (b) Implementing each
operation as a hard macro. Computation resources are un-
derutilized. (c) Ideal approach of merging operations while
maintaining regularity. Merged module is ready to tile with
other modules in bit-slice datapath.

sults together. One limitation of this approach is that the mod-
ule compaction step cannot handle specialized CLB features
such as a fast carry chain, and thus does not attempt to merge
modules that utilize such features. Another limitation is that
only physically adjacent modules in the previously determined
floorplan are considered for compaction.

In the FAST system [13], groups of nodes in the graph of da-
tapath operations that can be merged are identified; groups are
then greedily chosen to be mapped to optimized modules. Be-
cause FAST neither performs nor considers placement, when
it optimizes for delay it can only consider the computational
delay in the CLBs but not the routing delay between CLBs in
different modules. With large FPGAs, routing delay forms a
significant contribution to overall delay.

The approach presented in this paper and implemented in our
datapath mapping tool GAMA has a number of advantages over
these approaches. GAMA’s main feature is that it is extremely
fast; it does not flatten the modules to gates and so has a small
problem size; furthermore, it utilizes a mapping algorithm that
is linear in the number of nodes in the datapath operation graph.
Because it operates directly at the module level, it can intel-
ligently utilize datapath-level features of the FPGA such as
fast carry logic, an important advantage as more such features
become common. In a novel extension to module mapping,
GAMA simultaneously considers linear module placement in a

bit-slice datapath in a way that preserves the linear time com-
plexity of the algorithm. Knowing the relative placement of
modules allows GAMA to accurately estimate the routing con-
tribution to the overall delay along different paths and thus
make better mapping decisions. Finally, this approach is flexi-
ble; it has been utilized in mapping to two FPGA architectures:
Xilinx 4000 series FPGAs and the Garp chip’s reconfigurable
array being developed in our group [8]. Although both are
based on 4-input lookup tables (4-LUTs), these two arrays
present very different mapping problems.

In order to perform module placement in linear time, GAMA
examines only a subset of all possible linear orderings of the
optimized modules, and so is not guaranteed to find the optimal
placement. Therefore it is a good candidate for “low effort”
situations, such as getting quick cost estimates, obtaining a
good starting point for iterative search techniques, or simply
in situations where a high premium is placed on fast synthesis
time. Despite the non-optimality, experiments have shown
GAMA to achieve results of similar or better quality as those
obtained by vendor tools.

2 GAMA Overview

The input to GAMA is a dataflow graph in which each node is
a multibit operation, such as an addition or a bit-wise AND.
This dataflow graph may in general contain cycles as well
as nodes with fanout. GAMA’s job is to implement in the
CLB array the computation expressed in the dataflow graph.
Goals may be minimization of the number of CLBs required,
minimization of the critical path delay through the dataflow
graph, or minimization of the number of CLBs while meeting
a given timing constraint.

GAMA does not attempt to perform sequential optimization
(rearranging computing and storage elements to improve op-
portunities for optimization). When mapping to Xilinx FP-
GAs, it generates combinational circuits with registers at the
primary inputs, primary outputs, and on feedback edges that
form cycles. When mapping to the Garp chip, it generates
a heavily registered circuit in which no combinational path
delay (including both logic and interconnect delays) exceeds
one clock cycle. GAMA inserts registers as necessary to break a
long interconnect/logic path into shorter paths. This is possible
with Garp because GAMA performs placement simultaneously
with mapping and can use the Garp array’s simplified inter-
connect delay model to get accurate upper bounds on routing
delays. These registers contribute no additional delay in the
Garp timing model and make subsequent pipelining easier.

The main operations performed by GAMA are outlined below.

– Splitting into trees Since GAMA utilizes a tree-covering
algorithm that cannot directly handle cycles or graphs con-
taining nodes with fanout, the input dataflow graph must
be split into a forest of trees. Each of these will be fed to
the tree-covering algorithm, and the results ultimately con-
nected together. Cycles are broken at appropriate places,
usually storage elements demarking iteration boundaries.
This produces a directed acyclic graph (DAG), which must
be further split into trees. The simplest approach, used in
DAGON [9], is to split the DAG at the output of each mul-

2

tiple fanout node (see (a) below). GAMA goes further and
considers duplicating a shared subtree if it is small, since
duplication can lead to faster and smaller mappings in some
cases (see (b) below). The size threshold for duplicating vs.
splitting is a run-time option. Note that even if each tree
covering is optimal, the overall solution is not necessarily
optimal using this approach. However, optimal covering of
DAGs is NP-complete [2] and so is not directly attempted.

(a)

add

add

(b)

add

xor and xor and

– Tree covering Because of the hardware resources present
in typical CLBs, it is often possible to implement multiple
nodes from the DFG together in a compound module that is
much smaller and/or faster than if they were implemented
separately. Typically a compound module consumes a sin-
gle column of CLBs, but it could be of any size. When such
compound modules exist, there may be many different ways
that the DFG can be covered with module patterns from the
library of possible modules. Although in the worst case the
number of possible coverings of a tree is exponential in the
number of nodes in the tree, we can use dynamic program-
ming to find the best cover in linear time. This algorithm
is the heart of GAMA and will be described further in the
next section.

Each tree is passed to the tree-covering algorithm sepa-
rately. The trees are covered in topological order: a tree
that produces a certain value must be covered before a tree
that uses that value as an input at one of its leaves. The
delay as calculated by the covering of the producing tree is
used as the arrival time for the input to the consuming tree.

– Post-covering optimizations A pass over the nodes after
covering can be used to perform some localized optimiza-
tions. Opportunities for these optimizations often arise at
boundaries between different trees when they are recon-
nected after the covering. Also, this phase may consider
rearranging the modules after they have been placed by the
tree-covering algorithm. This allows layout possibilities
that are not considered by the tree-covering algorithm, such
as intermingling the modules from different trees. How-
ever, there may be parts of the tree-covering placement that
cannot be altered by this step because the module mapping
relies on that relative placement for correctness.

– Module generation Finally, each specified module must
actually be generated. A rich variety of functions can be im-
plemented using a column of 4-input LUTs augmented with
fast carry chain circuitry, which is the general architecture
currently targeted by GAMA. It is therefore not feasible to
simply instantiate each module by copying it from a static
library, as the necessary library would contain tens of thou-
sands of possible modules. Thus all modules are generated
on demand. The generator, given a pattern of DFG nodes,
values of constant inputs, datapath width in bits, etc., cre-
ates the module. All modules are generated with the same

pitch. Currently all modules are generated with the same
width in bits as well, although work in progress will gener-
ate modules only as wide as necessary.

3 Tree Covering

GAMA uses a linear-time tree-covering algorithm for finding the
optimal mapping of the DFG nodes to simple and compound
modules. The algorithm and underlying theory was origi-
nally developed for code generation in compilers [1], and was
first used for the analogous problem of technology binding by
Keutzer in DAGON. GAMA utilizes lburg, a tool developed
for the task of code generation in the lcc compiler [7]. We
found some modifications to lburg necessary as described in
Subsection 3.3. This modified version of lburg translates a
target-specific grammar into the actual tree-covering code that
gets compiled into GAMA.

3.1 Basic Algorithm

For review, this subsection describes the basic tree-covering al-
gorithm. The algorithm uses dynamic programming, labeling
the nodes in topological order from leaves to the root, combin-
ing previously calculated solutions to create new solutions at
each node. The algorithm is given in pseudocode in Figure 3.
The following definitions, illustrated in Figure 2, are useful in
understanding the algorithm:

– The pattern library contains the patterns with which the
input tree is to be covered. Each pattern is a graph of one or
more nodes corresponding to a module that can implement
that computation graph. Because of this correspondence,
we sometimes use module and pattern interchangeably.

– A pattern P from the pattern library matches at node N in
the input tree if, when P is overlayed on the input tree with
the root of P aligned with N, the type of each node in P is
the same as that of the corresponding node in the input tree.
That is, the root node of P matches N, the left child of the
root of P (if present) matches the left child of N, etc.

– The fanin nodes for a pattern P that matches at node N
are those nodes that are immediate predecessors of a node
covered by P but are not covered by P themselves. We also
define the fanin tree rooted at each fanin node.

and

add

node N

pattern P
(matches at N)

fanin nodes
for P at Nadd

and

Figure 2: Definitions for tree covering.

3

function coverTree(T) f
foreach node N in T in topological order f

curBestCost = 1;
curBestMatch = null;
foreach pattern P that matches at N f

fanins[] = fanin nodes for P at N;
forall i, faninCosts[i] = fanins[i].bestCost;
C = costFunction(P, faninCosts[]);
if (BETTER(C,curBestCost)) f

curBestCost = C;
curBestMatch = P;

g

g

N.bestCost = curBestCost;
N.bestMatch = curBestMatch;

g

/* information has been stored on T */
return;

g

function costFunction(P, faninCosts[]) f
cost.area = P.area +

P
i
faninCosts[i].area;

cost.delay =
maxi (P.inputToRootLatency[i] +

faninCosts[i].delay);
return(cost);

g

Figure 3: Basic tree-covering algorithm

The best cover at node N is calculated as follows. Every pattern
P in the library is compared at node N to see if it matches. If so,
the cost of the resulting cover is calculated by combining the
cost of pattern P with the costs of the best covers at each fanin
node of P at N. The way the costs are combined can be unique
for each pattern and is specified in the library. In general there
will be multiple matches at node N and thus multiple covers.
Only the best cover—that with the least cost—is retained, and
the rest are discarded. Note that the cost contains separate
fields for area and delay; Subsection 3.3 will discuss costs
further.

When the root of the tree is finally labeled with its best cover,
the best global covering has been found, although the infor-
mation is distributed throughout the nodes in the tree. The
patterns making up the best cover can be found by noting the
pattern P recorded as the best match at the root, finding each
fanin node for P, and then recursively descending, finding the
pattern that is the best match at each fanin node, etc.

Complexity

While conceptually every pattern is checked to see if it matches
at every node, the code produced bylburg is optimized so that
in practice many fewer checks are actually made. Specifically,
the covering routine first looks at the type of the node being
covered, and then branches to a section of code that only checks
for those patterns that have that same node type at their root.

Typically the number of patterns that apply at any specific
node type is a small fraction of the total. However, this is
dependent upon the library itself, and in the worst case, all
patterns need to be checked at a node. Thus, assuming that
the pattern matching and cost evaluations are all of constant
complexity, the execution time of the tree-covering algorithm
is O(NR), where N is the number of nodes in the graph (after
any duplication from the DAG splitting), and R is the number
of patterns in the library.

Techniques used to reduce the number of patterns in the library
will be described in Subsection 3.5. Numerical data regarding
execution time will be presented in Section 4.

3.2 Placement by Tree Covering

Since the modules will form a bit-slice datapath layout, a linear
ordering of the modules in the datapath must be determined.
This placement ordering could be determined in a separate step,
following the module mapping. However, if this approach were
used, the module mapping step would not have the benefit of
knowing the routing delays when making mapping decisions.
Furthermore, sometimes placement and especially adjacency
impact the consumption of CLB resources, particularly input
resources, in ways that affect how much computation can be
mapped to a CLB/module. In the absence of any placement
information, conservative mappings must be made in order to
guarantee that resources are not oversubscribed. This conser-
vative behavior leads to reduced exploitation of CLB resources.

In GAMA, relative module placement in the linear datapath
occurs simultaneously with module mapping. The best cover
at each node also specifies the linear order of the modules in
that cover. In the base case at the leaves of the tree, there
is just a single module in the layout. In the inductive step,
when creating a cover using a module M matching at a node,
a linear layout is constructed by abutting module M with the
layouts of the best covers of the fanin trees in some order. The
upper bound on the number of fanins for a module bounds the
number of permutations that must be considered. This means
that the time to calculate the best cover and layout at each node
is independent of the size of the tree, and thus the total time to
cover the tree when considering placement is still linear in the
size of the tree.

In forming the new linear layout, the fanin tree layouts can be
placed in any order, but the module covering the current node is
always placed at the “rootward” edge of the layout (Figure 4).

The following properties hold for module layouts using the
placement policy described:

– The modules within the same subtree are placed contigu-
ously.

– The output of a subtree is always available at the rootward
edge of the layout.

– The distance from a module to each of its fanins is a function
of only the sizes of the fanin trees and the order in which
the fanin trees are placed.

The last property, which follows from the first two, simplifies
distance calculations and therefore routing delay calculations.

4

t1 t2 m
t

size=2 size=4
t1 t2

m

t

n

1 2

size=2 size=4
t1 t2

t

n

12
m’

t2 t1 t
m’

(a)

(b)

Figure 4: Two alternative coverings of node n by two modules,
m and m0 , that differ only by their fanin ordering. The different
layouts that result are shown to the right. Note the different
routing lengths and thus delays.

For some particular ordering, the distance between a fanin tree
F and the pattern P being matched is simply the sum of the
sizes of the other fanin trees placed between F and P. This
distance is used to estimate the routing delay in a modified cost
function for use in evaluating different covers; the pseudocode
is in Figure 5. This cost function replaces the costFunction()
routine called from the coverTree() algorithm in Figure 3.

This layout strategy makes it straightforward to integrate place-
ment with module mapping. The basic idea is to replace each
module in the library with multiple copies having different
fanin orderings. For example, a simple two input addition mod-
ule would now have two versions in the library, one in which
the fanin tree producing the first operand is placed first, and
another in which the fanin tree producing the second operand
is placed first. For a module with n inputs, there could be up to
n! different versions, one for each possible fanin ordering. In
our current implementations of GAMA, n is typically three and
never more than four. See Figure 4 for an example of the two
versions for a two-input module.

This method only handles placement within a tree. The order-
ing of the different trees in the array is determined by a greedy
algorithm that tries to place trees along the estimated critical
path adjacent to each other. This ordering of trees is done be-
fore tree covering so that the tree covering algorithm can take
into account which input(s) are available in the adjacent tree.

Considering only layouts that abut rather than intermingle the
modules from each fanin layout seems very limiting. In Sec-
tion 4 we present data regarding improvement resulting from
global rearrangement of modules after the initial mapping and
placement. The experimental results show that this leads to a
slight improvement in result quality.

function placementCostFunction(P, faninCosts[]) f
cost.area = P.area +

P
i

faninCosts[i].area;

for i f
dist[i] = sum of sizes of fanin trees

placed between fanin[i] and P,
according to P’s fanin ordering;

g

cost.delay =
maxi (P.inputToRootLatency[i] +

routingDelayEstimate(dist[i]) +
faninCosts[i].delay);

return(cost);
g

Figure 5: Cost function used for evaluating the cover and
layout resulting from matching pattern P.

3.3 Costs

The dynamic programming algorithm only remembers the
“best” covering for each partial match at each node in the input
graph. In the instruction selection task for which lburg was
designed, the only cost that mattered was cycle count, whereas
in this hardware mapping problem there are two important met-
rics: delay (critical path delay from any primary input to that
node) and size (number of columns of CLBs utilized). Even if
we only cared about critical path delay, we still need to know
the sizes of the coverings of subtrees in order to calculate rout-
ing delays and make appropriate placement decisions. Thus,
the required cost information is actually an aggregate of multi-
ple scalar values. To support this, we extended lburg so that
the costs are represented by a user-defined structure (where the
‘user’ here is the person coding GAMA). DAGON also used
both area and delay costs. The tree matcher generator tool that
it used, Twig [15], already had support for aggregate costs and
so did not need modification.

Associated with each pattern in the library is a small C code
fragment, supplied by the user, to calculate the cost of the re-
sulting cover if that pattern is matched. The costs of the covers
at the fanins to the pattern are supplied for use in the calcula-
tion. Typically the code fragment is just a call to a subroutine
such as costFunction() in Figure 3 or placementCostFunction()
in Figure 5, but it can be customized arbitrarily for each pat-
tern. A pointer to the node itself is also available, so that any
information stored on the node can also be used in the cost
calculation.

There must be a way of comparing the costs in order to deter-
mine which candidate is “best”. In the basic lburg, the lesser
of the two scalar costs is selected. In order to handle costs that
are arbitrary structures, lburg was extended to allow a user-
defined macro BETTER() that takes two cost structures as
arguments and returns true if and only if the first cost argument
is better than the second.

There are currently two versions of BETTER() implemented.
The area version favors the cost with smaller area, with delay
used as a secondary key in the case of identical sizes. The
delay version favors the cost with less delay, with size used as

5

the tie breaker. In its basic mode, GAMA uses the same version
of BETTER() when covering the entire graph. Unfortunately,
while minimizing just area or just delay is straightforward,
minimizing both simultaneously or trading off between the
two is not.

3.4 Size-Delay Tradeoffs

The tree-covering algorithm is optimal if the goal is minimum
area. Picking the smallest solutions to the subproblems will
always lead to the smallest solution for the entire tree.

Trying to optimize area and delay simultaneously is not
straightforward. In this case it is impossible to pick the single
best solution for each subproblem without some global infor-
mation. For example, if a node is on the critical path, the best
cover is probably the fastest one, but if a node is off of the
critical path, the best cover is probably the smallest one. But
at the time a node is being covered, it is not known whether or
not it is on the critical path.

Our approach is to first cover the entire tree to minimize delay.
This gives us an estimate of the ASAP (as soon as possible)
value at each node. The ASAP values in turn can be used to
estimate the operation delay at each node. The time constraint
at the output of the tree (which must be greater than or equal
to the ASAP value at the root node) is then used to calculate
the ALAP (as late as possible) value at each node. This ALAP
value represents a target delay. If it is exceeded at a node, the
delay of the overall circuit will not meet the specified timing
constraint.

After this estimation, the tree is covered again, as usual, from
leaves to root. As each node is reached for covering, it is first
covered using the area minimization version of BETTER().
If, however, the ASAP value for this cover is found to exceed
the previously calculated ALAP goal value (i.e., all of the
slack has been used up), the node is covered again, but using
the delay minimization version of BETTER(). Thus, along a
non-critical path, nodes are covered to minimize area until all
of the slack is used up; then for the rest of the path, delay must
be minimized. This method is not guaranteed to result in the
smallest global solution since the slack is absorbed greedily by
nodes nearest the leaves; it could be that a bigger area reduction
would result if some of the slack were used by a node nearer the
root that had a slower but much smaller alternative mapping.

The idea of optimizing area on non-critical paths was also used
in Chortle [6], although the details of the implementation are
slightly different.

3.5 Large Module Library

As mentioned earlier, there are an extremely large number of
different compound modules that can be implemented by a
row/column of LUT-based CLBs. GAMA uses two techniques
to keep the library size manageable.

First, there are many DFG node types that, while computation-
ally different, are equivalent in regards to mapping—they can
be packed in exactly the same way into compound modules.

{and,or,xor}

{add,sub} additive

logical

add add add

xorand or

and

sub

or

sub

xor

sub

(a)

(b)

additive

logical

Figure 6: Example of library size reduction via equivalence. In
(a), not exploiting mapping equivalence, there must be a pat-
tern for each combination of opcodes. In (b), the equivalence
between addition and subtraction, and between bitwise-logical
operations, is exploited so that this single pattern can replace
the six patterns above.

When performing the mapping, there is no need to differenti-
ate those node types (opcodes) that are in the same mapping
equivalence class. The nodes in the DFG as well as those in
the patterns in the module library are therefore named by their
mapping equivalence class rather than their opcode (Figure 6).
The actual opcode is stored on each DFG node but is not used
until module generation.

The second technique to reduce the size of the library is factor-
ing out common subpatterns. This technique is commonplace,
but is reemphasized here because it is even more important with
the large library of patterns with which GAMA must contend.

3.6 Reconvergent Fanout

The basic tree-covering algorithm does not check for reconver-
gent fanout since the DAG has been split into trees beforehand,
and there is no reconvergence in a tree. The different inputs at
the leaves of a tree, however, may be from the same source. If
there is a case in which recognizing repeated inputs to a mod-
ule would be beneficial, the inputs can be explicitly checked
in the cost calculation; the pattern will only produce a cover
when both inputs are from the same source.

6

3.7 Limitations

There are several reasons why the mapping and placement so-
lution given by GAMA is not optimal. The initial splitting of the
input DAG into trees means that nodes in different trees can-
not be combined into a single compound module, which could
prevent the optimal solution for the DAG from being found.
The restricted module placement similarly limits the number of
potential solutions, possibly excluding the best one from con-
sideration. As described earlier, when the optimization goal
considers both area and delay, GAMA cannot guarantee finding
the optimal solution when only the single best solution is kept
at each node. Finally, GAMA can only do as well as is possible
given the modules in the library, which is very different than
the best solution possible given the FPGA architecture; the
solution can only be as good as the module library.

4 Results

4.1 Targeting Xilinx XC4000 Series

We have implemented a simple grammar for mapping DFGs
to Xilinx XC4000 series parts [16], for which GAMA shows
compilation time and performance benefits over a number of
alternative approaches.

Three simple C code fragments were used as benchmarks.
Each operation in these fragments was mapped directly to
a node in the dataflow graph fed to GAMA. In the case
of if/then/else statements, the computation along both
paths is performed unconditionally; multiplexors controlled
by the if condition select the correct value—the one from the
taken branch—for use later in the computation. Furthermore,
values that are obviously Boolean—the results of comparisons
and logical combinations thereof—are flagged as such and are
moved outside of the datapath section of the circuit. Each
benchmark was mapped to an 8-bit and a 32-bit wide datapath.

GAMA output is an XNF file containing mapped LUTs and
carry logic components, each annotated with a LOC location
constraint, in this way specifying both the merging and place-
ment of modules. All cases were fed through the Xilinx XACT
5.2 tools. The resulting execution times reported are in some
sense unfair to GAMA. Even though GAMA has completely
specified the partitioning and placement of all components in
the XNF file, ppr still consumes a significant amount of time
attempting to re-perform these tasks. In a real CAD flow uti-
lizing GAMA this time should be greatly reduced or eliminated.
Routing time would also be reduced if the Xilinx tools could
exploit the fact that all rows contain the same routing problem,
although the amount of potential savings here is hard to esti-
mate. However, the results from the CAD flow targeting Garp,
presented in the next section, give evidence that substantial
reductions are possible.

We compare the following design flows:

– gama: Mapping and placement performed by GAMA, op-
timizing for delay. The result is fed to Xilinx ppr, with
placer effort set to the minimum.

– gates: Start with the file produced by GAMA, but flatten it
to gates and then feed it back through Xilinx tools. LUT
mapping and use of fast carry chain are lost.

– hard: GAMA’s grammar is modified to emulate the hard
macro approach by removing rules that merge nodes into
compound modules. Relative location constraints (RLOCs)
are used within each module to keep it rigid, but the XACT
placement is free to position each module freely in the
array—the modules are not constrained to line up in a bit-
slice layout.

Initially we also tried a design flow that used GAMA’s mapping
to LUTs and carry chain components but placed no LOC or
RLOC constraints on any of them. We were surprised to find
that the individual carry chain components (each two bits) were
not placed in vertical alignment by the placer as we expected.
Thus the carry path would go through two bits worth of fast
carry logic but then have to travel through the general intercon-
nection network to get to the next two bits. This extra pressure
on the general interconnect resources coupled with the irregu-
lar placement resulted in a very difficult routing problem, one
that the Xilinx tools could not complete.

Results for CLB utilization and estimated delay along the crit-
ical path are shown below (Tables 1 and 2).

“caps” and “pp” make heavy use of Xilinx’s fast carry logic.
The “flat” implementations of these are understandably much
larger since they must utilize extra CLBs to perform the carry
computation. Also, the flattened carry path goes through 8 or
32 CLBs, drastically increasing the latency.

The “hash” benchmark is primarily shifts and exclusive-ors,
although it also has an addition, a subtraction, and a compar-
ison. In this circuit, there is greater opportunity for bit-level
optimization. The results from flattening the design to gates
demonstrate this with a reduction in the number of occupied
CLBs. However, even with this benchmark the delay is signif-
icantly increased when flattening is performed.

Benchmark gama gates change hard change
caps, 8 bits 48 64 +33% 59 +23%

caps, 32 bits 167 256 +53% 195 +17%
pp, 8 bits 57 81 +42% 67 +18%

pp, 32 bits 213 324 +52% 258 +21%
hash, 8 bits 49 30 �39% 64 +31%

hash, 32 bits 181 144 �20% 204 +13%

Table 1: CLB Utilization – Xilinx

Benchmark gama gates change hard change
caps, 8 bits 30.2 47.9 +59% 29.9 �1%

caps, 32 bits 50.3 179.3 +256% 50.1 �0%
pp, 8 bits 32.3 49.4 +53% 32.5 +1%

pp, 32 bits 52.1 190.4 +265% 53.6 +3%
hash, 8 bits 37.5 48.6 +30% 35.8 �5%

hash, 32 bits 56.3 185.9 +230% 51.2 �9%

Table 2: Critical Path Delay (ns) – Xilinx

7

 Gama partition place route

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550
 G

am
a

 G
at

es

 H
ar

d

 ’pp’

 G
am

a

 G
at

es

 H
ar

d

 ’caps’
 G

am
a

 G
at

es

 H
ar

d

 ’hash’

S
ec

on
ds

Figure 7: Tool execution times (seconds) for different design
flows, 8 bit wide datapath.

 Gama partition place route

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 G
am

a

 G
at

es

 H
ar

d

 ’pp’

 G
am

a

 G
at

es

 H
ar

d

 ’caps’

 G
am

a

 G
at

es

 H
ar

d

 ’hash’

S
ec

on
ds

Figure 8: Tool execution times (seconds) for different design
flows, 32 bit wide datapath.

The times for the Xilinx tools to complete the design are in-
dicated (Figures 7 and 8). Execution times were measured on
HP 9000/755 machines, operating at 99 MHz with 128 MB
RAM. Execution time for GAMA is less than three seconds and
so does not even show up in the graphs.

Note that in all cases, the processing takes more time to com-
plete when the placement or both mapping and placement in-
formation from GAMA is ignored, even though no significant
performance improvement results from doing so. Flattening
to gates gives an average 224% increase in run times for the
32-bit designs, and an execution time increase of 60% on av-
erage for the 8-bit designs. The corresponding figures for the
hard macro approach are 347% and 214%, respectively. In
other words, by using GAMA we expect a 3.24 times increase
in compilation speed over using a flattened netlist for the 32-
bit designs, and a compilation speedup of 1.60 times for the
8-bit designs. The expected benefits of using GAMA over hard
macros are compilation speedups of 4.47 times and 3.14 times
for 32-bit and 8-bit designs, respectively.

As expected, the design flow starting from gates took the
longest time to partition. The hard macro flow, however, took
the most time to route. The flow that used GAMA’s map-
ping and placement was reasonably fast in all tasks. The next
section, however, shows that a design flow that from start to

finish is optimized for datapath-intense circuits can perform
the complete synthesis task orders of magnitude faster.

4.2 Targeting Garp

The majority of our experience with GAMA to this point is tar-
geting the Garp chip being developed in our group [8]. Garp
consists of a standard MIPS processor augmented with a re-
configurable coprocessor on the same chip. The Garp array
contains a rich variety of computation, routing, and I/O re-
sources especially designed to support datapath computation.
It is likely that FPGAs with similar features will become com-
monplace in the future as their use as reconfigurable copro-
cessors become more widespread [5]. A commercial embed-
ded processor with a reconfigurable coprocessor, the National
Semiconductor NAPA1000 [14], has already been announced.

While the Garp array’s specialized resources ultimately enable
better datapath performance, they complicate the mapping task.
Many different resource interactions must be handled. We
have found that GAMA’s grammar handles these interactions in
a very natural way.

We are using GAMA as part of automatic compilation from
ANSI C. This work is based on the SUIF compiler system [3]
from Stanford. Kernels from the C program are automatically
extracted and fed to GAMA. The remainder of the program is
compiled to execute on Garp’s MIPS processor. The array is
dynamically reconfigured as needed throughout the execution
of the program. Since the Garp programmable array can be
dynamically reconfigured very rapidly, many different kernels
can be mapped to the array by the compiler. This means that
GAMA may be called upon to synthesize a large number of con-
figurations. This, combined with the desire that compilation
time for the Garp chip be comparable to typical software com-
pilation, places a very tight constraint on allowable execution
time for GAMA.

Making efficient use of all of the resources available in the
Garp chip presents a challenging mapping problem. Even with
grammar reduction strategies described in Subsection 3.5, the
grammar is quite large—currently around 1000 patterns. This
number would be reduced by a factor of about five if placement
determination were not handled by the grammar.

4.2.1 Module Rearrangement Postpass

There are no other tools against which to compare the quality
of GAMA’s output for the Garp array, so our quantitative results
are limited to comparing Garp against itself. Here we investi-
gate the benefit of a post-mapping module rearrangement pass
that can move modules globally, intermingling modules from
different trees. This pass cannot alter the module mapping.
The rearrangement algorithm is based on greedy clustering.

Twenty-five kernels extracted from a C preprocessor program
were used as benchmarks. Of the twenty-five, only six ben-
efited from the rearrangement postpass. All of the improve-
ments resulted from eliminating the need to insert a register in
the routing between modules in two different trees. If the elim-
inated register was the only functionality in a row, the entire

8

row could be eliminated. The postpass caused a reduction in
the mean of the delays over all twenty-five kernels from 11.28
cycles to 10.92 cycles, or 3.2%. The reduction in the mean of
the areas was from 9.72 rows to 9.56 rows, or 1.6%. The effect
of the postpass on GAMA’s execution time was negligible.

The fact that freely rearranging modules within a tree led to no
improvements is evidence that GAMA’s restricted placement
within trees most likely does not hurt result quality very much.

4.2.2 Execution Times for C to Garp

Table 3 breaks down the execution time for the complete com-
pilation from C. GAMA accounts for an extremely low fraction
of the overall compilation time, approximately one percent.
Profiling of GAMA execution shows that more time is spent
parsing the ASCII input file than is spent mapping, placing,
and generating the modules. These results show that GAMA
is extremely fast even with a realistic, complicated grammar.
As part of a CAD flow that understands and exploits datapath
regularity from start to finish, GAMA makes possible hardware
compilation times that compare favorably to those for software
compilation.

Task Time (seconds) Percentage
garpcc (driver) 0.31 17.9%

Kernel identification 0.26 15.0%
Write out kernel DFG 0.11 6.3%

GAMA 0.02 1.2%
gatoconfig 0.10 5.8%
Kernel replace 0.03 1.7%

gcc -O2 0.90 52.0%
Total 1.73 100%

Table 3: Breakdown of compilation time from ANSI C to
the Garp architecture. Input routine caps.c capitalizes a
memory-resident, null-terminated ASCII string. Times mea-
sured on a 200 MHz Ultrasparc.

These results show that even though GAMA utilizes a very
large grammar for mapping to Garp, it performs its mapping
task very quickly. Our experience is that maintenance diffi-
culties become a limit on the size of the grammar long before
performance becomes an issue.

5 Related Work

Koch’s Structured Design Implementation (SDI) [10, 11] also
optimizes across datapath module boundaries while retaining
and exploiting the regularity present. It first records the regu-
larity present in a design. Then it basically feeds a single bit
slice of the design to the standard random logic tools to perform
logic optimization. The resulting slice layout is then replicated
as appropriate to achieve the complete optimized datapath (ge-
ometry and port constraints are added to make sure the tiling
works). Unlike GAMA, this approach attempts to compact only
modules that are already adjacent in a previously determined
performance-optimized floorplan. This restriction is tolerated
because compacting physically non-adjacent modules often

disrupted the floorplan so that the increased routing delays
more than offset any savings in CLB delays. Furthermore, this
approach does not attempt to compact modules that utilize fast
carry chain circuitry, because of the difficulty in recognizing
uses of this circuitry after general logic optimization has been
performed. The use of general logic optimization, place, and
route tools also means SDI is stuck with the often slow run
times of these tools, although SDI does run much faster than
using these tools directly. One benefit that SDI gains by using
the general tools is that it can effectively create an unbounded
variety of very large compound modules. The variety of mod-
ules created by GAMA is limited by library size considerations.

The approach used in the FAST compiler [13] is similar to
GAMA in that it directly attempts to find in the dataflow graph
“feasible cones” (groups of nodes that can be implemented in a
compound module), rather than using standard logic optimiza-
tion techniques on the gate-level representation. Basically, all
feasible cones rooted at all nodes in the DFG are found. For
each feasible cone, a “cost benefit” is calculated, which is the
difference between the cost of the compound module imple-
menting the nodes in the cone versus the cost of implementing
each node separately. The cost can be either area or the delay
along the critical path. Then the covering is performed in a
greedy fashion, repeatedly selecting from the set of all feasi-
ble cones the cone that had the largest cost benefit and does
not overlap with any previously selected feasible cone. It is
clear that this approach cannot guarantee an optimal covering
for any cost metric. It is not clear whether the computational
complexity of this approach is linear in the number of nodes
in the DFG as is GAMA, or whether it is more expensive. This
approach does not integrate floorplanning with the module op-
timization, and thus its optimization goal can only consider
CLB delays, but not the increasingly important routing delays.
FAST does use a module delay model that is more sophisticated
than GAMA’s in that it models delays internal to a module from
low bits to high bits or vice versa (sometimes called a ripple
delay model).

Finally, another method using dynamic programming to obtain
a mapping and linear placement of logic modules is SEMPA,
as described by Lou et al. [12]. SEMPA solely addresses
area minimization, however, and utilizes a super-linear-time
algorithm that considers all possible module orderings. In
contrast, GAMA can perform delay optimization and runs in
time linear with the number of nodes in the tree, but only
considers a restricted subset of module orderings. Moreover,
because SEMPA targets standard-cell ASIC technology, its
formulation explicitly includes the area consumed by feed-
through wiring as part of the cost for the placement. In the case
of FPGAs, the wiring cost does not fit this model. All wires
in an FPGA are prefabricated, so there is no cost associated
with using additional wires, as long as a sufficient number are
available.

6 Future Work

We are in the process of improving the way GAMA handles
area and delay. We will implement and experiment with an
algorithm similar to that described by Chaudhary and Pedram
[4]. The dynamic programming algorithm will be modified to
keep not just a single “best” cover at each node, but all non-

9

inferior points along the area-time tradeoff curve. This will
involve further modification of lburg to generate code that
handles lists of covers rather than single covers.

We are also looking at keeping track of a max-cut cost—that
is, the maximum number of inter-module buses at any point in
the layout. As was the case with delay, calculation of max-cut
routing costs is simplified by the layout used by GAMA.

7 Summary

In this paper we have described a novel approach to FPGA
datapath mapping and placement, implemented in GAMA. By
casting the problems of module mapping and placement as a
unified tree covering problem, GAMA generates compact dat-
apaths as quickly and easily as compilers generate code—in
fact, using the same algorithm and tool, lburg. The results of
running GAMA on benchmark kernels from C programs target-
ing both Xilinx and our own Garp FPGA architectures show
that this is a fast, flexible approach to datapath synthesis.

For 32-bit datapath designs mapped to the Xilinx 4000 archi-
tecture, GAMA gives compilation speeds 3.24 times faster than
compiling flattened netlists, and 4.47 times faster than using
a hard macro approach. Designs generated using GAMA are
roughly of the same quality or even better than their flattened
or hard macro equivalents in terms of both CLB usage and
critical path delay.

Acknowledgements

GAMA originally started as a class project in CS265, Advanced
Programming Language Implementation, under the direction
of Prof. Susan Graham. Support for the Xilinx XC4000 archi-
tecture was added as a class project in CS294-7, Reconfigurable
Computing, under the direction of André DeHon.

We benefited greatly from additional feedback and suggestions
from Krste Asanović, Andreas Koch, and John Hauser. The
comments from the anonymous referees were also extremely
valuable.

References

[1] AHO, A., AND GANAPATHI, M. Efficient Tree Pattern Matching:
An Aid to Code Generation. In Conf. Record of the Twelfth An-
nual ACM Symposium on Principles of Programming Languages
(Jan. 1985), pp. 334–340.

[2] AHO, A., JOHNSON, S., AND ULLMAN, J. Code Generation for
Expressions with Common Subexpressions. Journal of the ACM
24, 1 (Jan. 1977), 146–60.

[3] AMARASINGHE, S. P., ANDERSON, J. M., WILSON, C. S., LIAO,
S.-W., MURPHY, B. M., FRENCH, R. S., LAM, M. S., AND HALL,
M. W. Multiprocessors from a Software Perspective. IEEE Micro
16, 3 (June 1996), 52–61. See also http://suif.stanford.edu/.

[4] CHAUDHARY, K., AND PEDRAM, M. A Near Optimal Algorithm
for Technology Mapping Minimizing Area Under Delay Con-
straints. In Proc. 29th ACM/IEEE Design Automation Conference
DAC ’92 (June 1992), IEEE Computer Society Press, pp. 492–
498.

[5] DEHON, A. DPGA-Coupled Microprocessors: Commodity ICs
for the Early 21st Century. In Proceedings IEEE Workshop on
FPGAs for Custom Computing Machines (Cat. No.94TH0611-4)
(1994), IEEE Comput. Soc. Press, pp. 31–9. AN4754544.

[6] FRANCIS, R. Technology Mapping for Lookup-Table Based Field-
Programmable Ga te Arrays. PhD thesis, University of Toronto,
1992.

[7] FRASER, C., AND HANSON, D. A Retargetable C Compiler:
Design and Implementation. Benjamin/Cummings, 1995.

[8] HAUSER, J., AND WAWRZYNEK, J. Garp: A MIPS Processor
with a Reconfigurable Coprocessor. In Proceedings of IEEE
Symposium on FPGAs for Custom Computing Machines (Napa,
CA, Apr. 1997), K. L. Pocek and J. M. Arnold, Eds.

[9] KEUTZER, K. DAGON: Technology Binding and Local Opti-
mization by DAG Matching. In Proc. 24th ACM/IEEE Design
Automation Conference (1987), ACM, pp. 341–347.

[10] KOCH, A. Module Compaction in FPGA-based Regular Datap-
aths. In Proc. 33rd ACM/IEEE Design Automation Conference
(1996), ACM.

[11] KOCH, A. Structured Design Implementation – A Strategy for Im-
plementing Regular Datapaths on FPGAs. In Proc. ACM/SIGDA
International Symposium on Field Programmable Gate Arrays
(Monterey CA USA, 1996), ACM, pp. 151–157.

[12] LOU, J., SALEK, A. H., AND PEDRAM, M. An Exact Solution to Si-
multaneous Technology Mapping and Linear Placement Problem
for Trees. In Proc. International Workshop on Logic Synthesis
(May 1997), pp. 1–4.

[13] NASEER, A., BALAKRISHNAN, M., AND KUMAR, A. An Efficient
Technique for Mapping RTL Structures onto FPGAs. In Proc.
4th International Workshop on Field-Programmable Logic and
Applications, FPL ’94 (Prague, Czech Republic, Sept. 1994),
Springer-Verlag, pp. 99–110.

[14] NATIONAL SEMICONDUCTOR CORPORATION. NAPA1000 Data
Sheet, 1996.

[15] TJIANG, S. Twig Reference Manual. Comp. Sci. Tech. Rep. 120,
AT&T Bell Laboratories, January 1986.

[16] XILINX. The Programmable Logic Data Book. 1994.

10

