
Appears: Proceedings of the 1999 Symposium on VLSI Circuits (VLSI’99) June 17-19, 1999

Embedded DRAM for a Reconfigurable Array

Stylianos Perissakis, Yangsung Joo1, Jinhong Ahn1, André DeHon, John Wawrzynek

Computer Science Division 1DRAM Design 5 Team
University of California, Berkeley LG Semicon, Cheongju, Korea

fsper,johnw,amdg@cs.berkeley.edu fjooys,jhahng@lgsemicon.co.kr

Abstract

A field-programmable gate array, coupled with an on-chip 2 Mb
DRAM bank has been designed, to aid in the study of the trade-
offs involved in the design of embedded DRAM for FPGAs.
The memory can be used both as configuration storage, en-
abling reconfiguration in under 5 �s, and application data mem-
ory, providing application logic executing on the array with up
to 2 GB/sec data bandwidth. The variable latency of the DRAM
is hidden from the logic by a stall mechanism and an SRAM-
like interface.

Introduction

With the increasing number of gates on a single chip, it is nec-
essary to integrate a large amount of memory on the die as well,
as is evident from the large caches on most microprocessors [1].
FPGAs in particular lag other architectures in the amount of
on-chip memory, mainly because of their initial application as
“glue logic”, where little or no memory was needed. Devices
available in the market today provide limited amounts of fine-
grain SRAM, currently up to 96 blocks of 4 Kbits1. This is in-
sufficient for the data sets of many applications, which makes it
necessary to manage the internal memory as a cache and store
the full data set in external memory, accessible through the low
bandwidth external interface.

In addition, when an FPGA needs to be reconfigured “on the
fly”, the reconfiguration time can be a performance limitation.
For example, in common speech recognition systems, a signal
processing front end, a multilayer perceptron and a Viterbi de-
coder must alternate at frame rate, typically 800 Hz. If the con-
figuration bitstreams reside in external memory, the low band-
width of the external interface makes this alternation impracti-
cal. If, on the other hand, bitstreams are preloaded in an inter-
nal memory, improvement by an order of magnitude is possible,
making this model of computation possible.

DRAM, with an order of magnitude higher density than
SRAM, provides the opportunity to integrate large memory
blocks on-chip. This however comes at the expense of in-
creased latency and somewhat degraded logic performance.
Trumpet is a test chip that we designed in order to study the
tradeoffs involved in the design of reconfigurable arrays cou-
pled with coarse-grain DRAM banks.

1Xilinx XCV1000

The design

A. Trumpet

Our long-term architecture goal consists of a network of com-
pute pages (configurable subarrays) and memory pages (Con-
figurable Memory Blocks, or CMBs). Compute pages are based
on a 5-input lookup table (5-LUT) logic block. Compute and
memory pages are interconnected by a fat pyramid network [2]
– a fat tree with additional nearest neighbor connections, or
“shortcuts”. This network extends into each subarray, reaching
individual logic blocks at the leaves, while the root serves as
a connection to an on-chip microprocessor. The design relies
heavily on pipelining to maintain a high clock rate. Many of
the switches in the network are registered, so it takes multiple
cycles for a signal to travel across the chip. Retiming registers
within each logic block, as well as at the CMB inputs, are used
to balance the delays between signals that travel different dis-
tances [3].

Each subarray, CMB and switchbox requires one or more
application-dependent configuration bitstreams. Such bit-
streams can be preloaded in the DRAM within the CMBs and
loaded on demand into their respective destinations at the full
DRAM bandwidth. Subarrays and CMBs are arranged in pairs
for configuration purposes, while configuration of each switch-
box can be assigned to the nearest CMB. In this way it is possi-
ble to achieve partial or full reconfiguration in the time it takes
to configure one subarray, one CMB and one or two switch-
boxes. Of course, it is also possible to configure any of the
above from the external interface, at a slower rate. In addition,
state bitstreams for both CMB and subarray can be loaded or
dumped in a similar fashion for the purposes of initialization,
diagnostics and context switching.

For data access, each subarray can reach the nearest CMB
via the shortcuts or tree connections, or any remote CMB via

CPU

Memory page

Compute page

Tree connection

Shortcut

Switchbox

Figure 1: Architecture overview

Appears: Proceedings of the 1999 Symposium on VLSI Circuits (VLSI’99) June 17-19, 1999

Table 1: TEST CHIP CHARACTERISTICS

Chip size 10 x 5 mm2

Feature size (DRAM/logic) 0.25/0.35 �m
Supply voltage (DRAM/logic) 2.1/2.5 V
Target cycle time (DRAM/logic) 8/4 ns
DRAM capacity 2 Mbits
Logic capacity 64 5-LUTs
Reconfiguration time (CMB/subarray) 0.5/4.5 �s

the tree. Routes are determined by the switchbox configurations
and are static for the lifetime of a configuration.

Trumpet consists of a single 64 logic block subarray and a
single 2 Mbit DRAM bank. While it does not expose the in-
teractions of multiple compute and memory pages, it provides
a means to evaluate some of the related architecture and cir-
cuit design issues. Trumpet is currently in fabrication and is ex-
pected back in March of 1999.

B. DRAM macro

The CMB design is based on a 2 Mbit DRAM macro, de-
signed on a triple well, 0.25 �m, 64 Mbit DRAM process. Mea-
suring 3.7 by 2.4 mm2, it is organized as 2 subbanks, each 1K
rows by 1K bits. It has a 128-bit wide SDRAM interface, run-
ning at 125 MHz. A row buffer in each subbank can hold a row
of data while the subbank is being precharged. Row and column
latencies are 5 and 2 cycles respectively. For the logic design,
the design rule is relaxed to 0.4 �m (0.35�m gate length), while
4 layers of metal are available.

C. CMB logic

The CMB consists of the DRAM macro and an additional
layer of logic, that implements the functionality needed by the
subarray. The CMB can operate in two basic modes. After re-
set and initialization, it will accept commands from the exter-
nal interface and execute block transfer operations for the pur-
pose of configuration load/dump, state load/dump or I/O. The
RUN command will set the CMB into the application execution
mode, in which it can receive and process read/write requests
from the logic running in the subarray.

An internal address register, the Local Address is used as the
running address for the block transfers. A command from the
external interface can be used to load the starting address. The
Local Address is autoincremented after each word transferred.
A 64-bit data bus, the “global data” bus, shared by the CMB, the
subarray and the external interface, is used for the data transfer.

After a configuration and initial state have been loaded into

Controls

Local Addr

[17:0][1:0]

Global[63:0]

[1
59

:0
]

G
lu

e

[1
27

:0
]

[6
3:

0]

[1
59

:0
] S

ta
ll

B
uf

fe
rs

R
et

im
in

g
R

eg
s

Tree[159:0]

Shortcut[159:0]

Ctl
Addr[10:0]

A
dd

r
X

ba
r

D
at

a
X

ba
r

CMB controlInternal Addr

Internal Ctl

DQ[127:0]

DRAM
Macro

Figure 2: CMB block diagram (not to scale)

both the subarray and the CMB, the application can start ex-
ecuting. At that time, the local address and the global data
bus are disconnected and the address/control source and data
source/sink are mapped onto the tree or shortcut wires, directly
accessible from the subarray. Separate read and write data buses
are provided. The width of each data bus is configurable, from
0 to 8 bytes wide, with a maximum combined width of 80 bits.
The address width can range from 4 to 18 bits, depending on the
total address space in use by the application and the required ad-
dressing granularity.

Out of each addressed word, each bit must be routed inde-
pendently to any logic block in the compute page, depending on
the layout of the logic. The tree network is designed so that any
connection can be made by traversing the tree up towards the
root, then going down towards the destination logic block. This
scheme works well for connections within the compute page,
but for connections between the memory and the subarray, one
part of the route has to be completed in the CMB. Initial stud-
ies indicated that the area required to replicate the tree in the
CMB would be quite large. Therefore an alternative structure
was pursued. A routing network consisting of three stages of
crossbar switches, combined with 2:1 and 4:1 (de)multiplexers
was chosen. This structure is not entirely non-blocking, but it
is possible to choose compatible routes to the logic blocks in a
simple procedural way. The latency through this network does
not exceed a single cycle.

A similar but smaller and somewhat simpler structure is used
to route address and control bits from the subarray to the CMB
logic. The internal address is always 18 bits wide, addressing
the entire memory space to the byte. When the application pro-
vides fewer address bits, the uppermost bits are filled in from the
Local Address register. This provides a basic means of reloca-
tion: a base address is loaded into the Local Address register,
while the offset bits are provided by the application.

The target clock frequency for the logic is twice that of the
DRAM macro, or 250 MHz. Sequential accesses can be per-
formed internally at the full width of 128 bits at the DRAM
clock rate and “folded” to 64 bits at the logic clock rate. The
2:1 multiplexer shown in figure 3, controlled by one address bit,
performs this folding. Back-to-back random accesses must be
aligned to the rising edge of the DRAM clock, reducing the sus-
tained data rate by a factor of 2.

2:1 mux/demux

128b @ 125 MHz

64b @ 250 MHz

Addr[3]

Addr[2:0]

Config

Config

Config

Config

Up to 80 of 320

4:1 mux/demux

Bits [7:6] Bits [5:4] Bits [3:2] Bits[1:0]

Figure 3: Data crossbar block diagram

Appears: Proceedings of the 1999 Symposium on VLSI Circuits (VLSI’99) June 17-19, 1999

B
yt

e
0

B
yt

e
1

B
yt

e
7

Addr[2:0]

Repeat 10 times

Sel[7:0]

+ Offset

Figure 4: Data crossbar detail

When the addressing granularity is less than 64 bits,
the appropriate number of least-significant address bits,
Address[2:0], are used to index a sub-word of the appro-
priate width. This is implemented by the uppermost crossbars
in figure 3. Each of these 4 crossbars routes 2 bits out of every
byte accessed. To reduce the number of configuration bits and
control wiring required, each bit pair is routed as a unit. Pairs
can be split in the final crossbar stage. As shown in figure 4,
each vertical slice of the upper crossbars is controlled by a
configuration word, the byte offset, and the appropriate number
of address bits. The byte offset indicates which byte of the
accessed word, if any, will be routed over this slice. When
a nonzero address is applied, it is added to the byte offset,
selecting the appropriate byte.

To ease application development, the interface provided to
the logic is similar to a synchronous pipelined SRAM. A re-
quest and read/write signal are mapped onto a pair of wires at
the interface. The row buffers of the DRAM macro are used as
a simple row cache. When the requested word resides in one
of the row buffers, it is returned within the minimum latency of
six logic cycles. This consists of the two DRAM cycle latency
of the macro, plus two logic cycles because the inputs and out-
puts of the CMB are registered2. If the requested word is not in
the row buffer, the appropriate subbank is precharged, the new
row is accessed and the requested word is returned, after a total
latency of 16 cycles. This variable latency is hidden from the
application logic with a stall mechanism. Whenever a row miss
occurs, the subarray clock is masked for 10 cycles, so the logic
will still experience a 6-cycle latency in terms of its gated clock.

Given the high operating frequency, the stall signal will need
more than a clock cycle to reach the subarray and take effect.
This delay is 2 cycles in Trumpet and would be longer in larger
chips. In the meantime, the clock in the subarray is running and
more requests are generated. These are buffered in a set of input
stall buffers, to be processed after the current row miss has been
completed. Data returned from the memory while the subarray
is stalled is buffered in a set of output stall buffers until the sub-
array resumes. The 6-cycle read latency sets the required depth
of the stall buffers to 6 slots. As shown in figure 5, request B
results in a row miss. Before the subarray clock is stalled, re-
quests C, D and E have been generated. These are buffered for
processing after B. In the meantime, the data from request A is
returned by the macro. This is also buffered, to be returned after

2Simulations have shown that the CMB controller will not meet the 4ns cy-
cle target in this test chip. An additional stage in the pipeline is required to meet
the target, with a latency of 7 cycles at 250 MHz.

D(A) D(B) D(C)

A B C D E E F G H

A Row B C D E F G H

D(A) D(B) D(C) D(D)

CLK

S/A CLK

Req (@ interface)

Stall

Req (to DRAM)

DRAM DQ

Data out

Figure 5: Stall timing (assuming sequential accesses)

the proper latency of 6 subarray clock cycles.

Configuration bits are implemented as 5T SRAM cells,
linked into a 162-bit wide, 20-deep shift register. During a con-
figuration load from DRAM, 3 successive 64-bit words are de-
multiplexed to a 192-bit configuration word (including 30 don’t
care bits). Every 3 cycles a new word is pushed into the shift
register. Configuration of the CMB can thus be achieved in un-
der 0.5 �sec (with some overhead cycles), when the bitstream is
preloaded in the DRAM. Configuration from the external inter-
face is limited by the external bandwidth, 125 MB/sec, resulting
in 4 �sec configuration time.

The DRAM macro clock is derived from the logic clock
by simple division by 2. This results in some skew, with the
DRAM clock lagging, so hold time is a concern. The DRAM
clock is buffered internally in the macro, resulting in a hold time
requirement of 1 ns for all inputs. The clock divisionadds about
400 ps to that. To guarantee the hold requirement, all DRAM
macro inputsare latched with level- sensitive latches, controlled
by the logic clock. This guarantees a 2ns hold time, at the ex-
pense of about 350 ps of latch delay.

Evaluation

The motivation behind using DRAM was the high density it of-
fers. However, the average density of the CMB is far from typ-
ical DRAM densities. Its overall dimensions are 5.05 by 2.6
mm2, yielding an average density of 156 Kbits/mm2. Com-
pared to typical DRAM densities, in the 700 Kbit/mm2 to 1
Mbit/mm2 range for similar technologies, we see a difference
by a factor of about 5 to 6. This difference is mainly because of
i) the area required to implement the CMB functionality, and ii)
the small capacity of the macro, which magnifies the overhead
caused by the macro controller and CMB logic (about 40% and
30% of the total area respectively).

There is definitely room for improvement in these numbers.
There are significant inefficiencies arising from the fact that the
DRAM macro and the CMB have been designed independently,
with the macro being a “general purpose” component. In fact,
much of the macro functionality is not used in the CMB. In
an alternative implementation, the macro and CMB controllers
could be combined and unused functionality removed, resulting
in a much smaller control overhead and increased density.

In a possible SRAM implementation, assuming a typical 48
Kbits/mm2 for the SRAM core [4] [5], it would be possible to
fit 192 Kbits of SRAM in the same area as the DRAM core. The
macro and CMB controllers would be much simpler, while the
CMB datapath would also be somewhat simplified, mainly be-
cause of the absence of stall buffers. For a rough estimate of
the area of the SRAM implementation, assume that the con-
troller takes one third the area of the combined DRAM and

Appears: Proceedings of the 1999 Symposium on VLSI Circuits (VLSI’99) June 17-19, 1999

CMB controllers, and the 0.65 mm2 taken by the stall buffers
(1.85 by 0.35) are saved. This results in an overall density of 25
Kbits/mm2. Although this is an approximate number, it shows
that for the given functionality there is still about an order of
magnitude difference between SRAM and DRAM implemen-
tations.

The price to pay for this density advantage is the increased
latency, which frequently results in reduced bandwidth avail-
able to the application logic. The effect on bandwidth is largely
dependent on the access patterns. For example, during a con-
figuration load, the accesses are sequential read-only. The state
machine in the CMB controller prefetches rows, so that no stalls
occur and the full bandwidth is sustained. If the access pattern is
completely random, so that almost every access requires a row
fetch, the bandwidth will be limited by the row cycle, 7 DRAM
clock cycles.

In many cases the access patterns are predictable, frequently
consisting of sequential segments. This gives the programmer
the opportunity to arrange the data layout so that few stalls oc-
cur. In many image processing applications for example, pix-
els are accessed sequentially in row- or column-major order.
Such access patterns will result in stalls only at the DRAM page
boundary.

Another situation where the read latency is exposed is a se-
quence of alternating reads and writes. Although separate read
and write buses are used in the subarray and the CMB interface,
a single bidirectional datapath is used internally in the macro.
So, a write has to wait for the previous read to complete, to
avoid contention. This situation is handled by stalling, resulting
to execution of a read and a write every 8 cycles (equal to the
read latency plus 2). It is possible of course to improve on this
by rearranging the access pattern, but this requires larger pro-
gramming effort and possibly more logic or memory resources.
Potential hardware support could consist of reduced read la-
tency and/or separate read and write datapaths in the DRAM
macro – possibly at the expense of having only half the width
available to each direction. To overcome this width limitation,
a single configuration bit could be used to select between a wide
bidirectional bus and two narrower unidirectional buses, de-
pending on the intended access pattern.

An additional source of bandwidth loss is refresh overhead.
In Trumpet refresh is handled by the external control. At the
appropriate interval, operation is halted and one or more rows
of the DRAM are refreshed. Based on earlier characterization
of this process and with expected high junction temperature
caused by the logic operation, a retention time of 8 to 16 �sec is
expected. With 2K refresh cycles and some overhead for halt-
ing and restarting the application, this results in about 2.5% to
5.0% reduction in the available bandwidth. More accurate data
will be available once the testchip is characterized. However,
in many cases, like FIFOs and temporary buffers, refresh is not
required if the lifetime of the data is shorter than the retention
time. In such cases refresh can be omitted.

Conclusion

Trumpet is a first approach to a memory-rich reconfigurable ar-
chitecture. Large memory banks make it possible to store con-
figurations on-chip, enabling rapid run-time reconfiguration. In
addition, application kernels can benefit from high bandwidth
access to data.

It is important for application development that the complex-
ity of the DRAM is hidden from the programmer. We have
demonstrated a simple SRAM-like interface that provides a fa-
miliar abstraction to the application developer.

Although no claim is made that Trumpet represents exactly
the right balance between processing and memory resources,
we believe that it is a step to the right direction. Experience
gained by using it in real problems will be invaluable for a better
understanding of the tradeoff between processing and memory.

References

[1] C.E.Kozyrakis, et al. “Scalable processors in the billion-
transistor era: IRAM.” IEEE Computer, pages 75–78,
September 1997.

[2] R.I.Greenberg. “The fat-pyramid: A robust network for
parallel computation.” In Advanced Research in VLSI,
pages 195–213, 1990.

[3] W.Tsu, et al. “HSRA: High-speed, hierarchical syn-
chronous reconfigurable array.” In FPGA, 1999.

[4] K.Nakamura, et al. “A 500MHz 4Mb CMOS pipeline-
burst cache SRAM with point-to-pointnoise reduction cod-
ing I/O.” In ISSCC, page 406, 1997.

[5] K.Ishibashi, et al. “A 300MHz 4-Mb wave-pipelined
CMOS SRAM using a multi-phase PLL.” In ISSCC, page
308, 1995.

