
Analysis of Quasi-Static Scheduling Techniques in a
Virtualized Reconfigurable Machine

Yury Markovskiy, Eylon Caspi, Randy Huang,
Joseph Yeh, Michael Chu, John Wawrzynek

University of California, Berkeley

{yurym, eylon, rhuang, jyeh, mmchu, johnw}@cs.berkeley.edu

André DeHon
California Institute of Technology

andre@acm.org

ABSTRACT
The SCORE compute model uses fixed-size, virtual compute
and memory pages connected by stream links to capture the
definition of a computation abstracted from the detailed
size of the physical hardware. When the number of
physical compute pages is smaller than the number of
virtual compute pages in the abstract computation graph,
the design is time-multiplexed onto the available physical
hardware. A key component of this strategy is an automatic
scheduler that selects the temporal sequencing of virtual
resources onto the physical device. We describe a quasi-
static scheduling strategy that retains the full semantic
power of the dynamic SCORE flow graph while taking
advantage of static scheduling techniques at program load
time to hoist most of the computational work out of
the inner scheduling loops. This strategy reduces online
scheduling work per reconfiguration epoch by an order of
magnitude. In addition, a more global perspective available
from offline-scheduling improves schedule quality, resulting
in a net reduction of total execution time by 46–81%.

1. INTRODUCTION
Reconfigurable computing devices such as FPGAs have

demonstrated 10x-100x gains in performance and functional
density over microprocessors for a variety of applications
[6], yet their popular use is limited to application-specific
domains or serving as ASIC replacements. These uses ignore
the devices’ programmability and limits their applicability
to only a few areas in computing. Whereas microprocessor
architectures have traditionally enjoyed software compati-
bility and automatic performance scaling across device gen-
erations, applications developed for current reconfigurable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’02,February 24-26, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-452-5/02/0002 ...$5.00.

devices are usually limited to one target and require man-
ual adaptation to take advantage of new, larger and faster
targets.

SCORE [4] strives to eliminate existing barriers to wide-
spread efficient exploitation of reconfigurable devices by in-
troducing a compute model based on paged virtual hard-
ware (similar to virtual memory). The paged model pro-
vides a framework for device size abstraction, automatic
run-time reconfiguration, binary compatibility among page-
compatible devices, and automatic performance scaling on
larger devices, without recompilation.

SCORE allows a programmer to describe a computation
as a graph of arbitrary sized operators (FSMs) that com-
municate tokens1 through streams (FIFO channels) with
logically unbounded buffering capacity. A high-level lan-
guage compiler maps a given arbitrary sized computation
into a graph of fixed-size compute pages constrained by the
underlying microarchitecture. Our current target hardware
is a microprocessor/reconfigurable array hybrid architecture
shown in Figure 1. The array is partitioned into fixed-
size compute pages (CPs) and configurable memory blocks
(CMBs). The run-time scheduler time-multiplexes compute
pages on physical CPs and manages buffer allocation in
CMBs to provide the user with the illusion of unbounded
hardware.

The separation between the compiler and the run-time
scheduler is similar in purpose to the traditional separation
between the function of a compiler and an operating system.
The compiler is responsible for transforming a high-level
representation of the computation into a binary form suited
for configuring individual hardware resources on the array.
The scheduler is responsible for binding and managing those
resources at execution time. This separation allows delaying
certain mapping decisions until execution time and adapting
those decisions to the specific hardware configuration being
used. Adapting to different device sizes is critical to appli-
cation longevity, enabling automatic performance scaling on
next generation hardware.

SCORE computation graphs permit data-dependent to-
ken consumption/emission, resulting in dynamic flow rates
and making it impossible to place static bounds on memory

1A unit of communication with respect to stream operations.

usage. The latter requires a scheduler to manage stream
buffer sizes at run-time to guarantee execution correctness.
More restrictive models of computation such as synchronous
(SDF) [1], boolean controlled (BDF) and integer controlled
data-flow (IDF) [2, 3] define necessary conditions for graph
consistency and bounds on buffering requirements, and there-
fore allow a simpler, purely static scheduling methodology.

The scheduling problem discussed in this paper is an NP-
hard optimization problem with multiple, simultaneous in-
dependent constraints on memory, communication band-
width and available resources. The literature offers a wealth
of efficient and near-optimal scheduling solutions for restrict-
ed data-flow compute models (e.g. synchronous data-flow[1]).
We demonstrate that SCORE graphs can be scheduled effi-
ciently while retaining the full semantic power and expres-
siveness of our stronger compute model.

The main objective of this work was to avoid the high
run-time overhead of a fully dynamic scheduler without re-
stricting data-dependent data-flow in SCORE. In addition
to drastically reducing the run-time overhead (computation-
al workload) of scheduling, the quasi-static scheduler pro-
duces better quality schedules than the dynamic scheduler.
The net result is an average factor of 3 reduction in the total
run-time for a range of applications.

This paper is organized as follows. In Section 2, we
examine a fully dynamic scheduler. Section 3 presents a
space of available scheduling solutions and classifies several
feasible implementations in a taxonomy. Sections 4 and 5
analyze our quasi-static scheduler and its implementation
methodology. Section 6 presents results.

2. FULLY DYNAMIC SCHEDULER
Because few restrictions exist on token flow behavior in

SCORE compute graph nodes, a fully dynamic run-time
scheduler [5] was a natural choice for our initial system
implementation. The scheduler, designed to handle large
data-dependent variations in page token consumption and
emission rates, makes decisions driven largely by token avail-
ability at page inputs. A dynamic scheduler can contin-
uously monitor active computation progress on the array
and adapt the schedule to optimally match the observed
application data-flow patterns. The resulting schedule qual-
ity depends heavily on the temporal granularity (frequency)
of monitoring and scheduling decisions. For instance, fine-
grained cycle-by-cycle scheduling may result in near-optimal
schedules but incurs prohibitively expensive run-time over-
head.

2.1 Operation and Structure
Given an application graph and resource constraints (e.g.

number of CPs and CMBs), our dynamic scheduler attempts
to time-multiplex virtual graph nodes on physical resources
to minimize application total execution time (makespan).

The scheduler manages execution of application graphs on
the array by issuing reconfiguration and memory transfer
commands to the array controller. During execution, the
scheduler is invoked once for each fixed time-slice (250,000
cycles in our implementation), as shown in Figure 2. At each
invocation, the scheduler queries the array state, decides
to evict and/or schedule particular nodes, reconfigures the
array, and resumes array execution.

Before examining each individual scheduling module in
detail, let us look at two simple execution scenarios and the

L2 Cache

MMUICache DCacheuP

CP

CMB

Figure 1: Hypothetical, single-chip SCORE system.

scheduler’s role in them:
• Small Design, Large Array is the the simplest scenario,

where the entire design fits on the array. The role of the
scheduler is reduced to mapping a compute page graph
to selected physical resources once.
• Large Design, Small Array is a common scenario where

a design requires more resources than available, and the
scheduler time-multiplexes graph nodes onto physical
resources. The scheduler is invoked once per time-slice;
it queries the array state, evaluates the computation’s
progress, and adjusts the set of resident nodes.

The scheduler is also responsible for managing application
buffers and resolving bufferlock, an infrequently occurring
condition resulting from implementing a SCORE applica-
tion, which assumes unbounded stream buffers, on a physical
array with limited resources (see [12] for a formal treat-
ment). Some applications may require streams to buffer
a greater number of tokens than the array stream hardware
permits, and failure to provide this buffering capacity would
result in deadlock. The scheduler monitors the progress
made by a design and checks for potential deadlock con-
ditions. If any are detected and the cause is determined
to be limited buffering capacity of a stream, the scheduler
intervenes to resolve the bufferlock. The offending stream
is “cut,” and a memory block configured as a FIFO is in-
serted to provide additional buffering. Array execution then
resumes.

Complete treatment of the dynamic scheduler operation
can be found in [5]. Here we shall briefly discuss the module
flow and critical data structures. The dynamic scheduler
uses a version of priority-list scheduling. Instead of evaluat-
ing all graph nodes as candidates using a priority function,
only the nodes that satisfy precedence constraints (their pre-
decessors have been/are scheduled) are considered. These
candidate nodes form a “frontier” that moves downstream
across a compute graph. The priority of a candidate is
directly proportional to the availability of input tokens and

Timeslice

Run A

time

Page Execution

Run B Run C

Reconfig

Compute Schedule

Figure 2: Application Execution Timeline.

output space. Alternatively the algorithm can be thought
of as a greedy, breadth-first packing of nodes onto the array.

Figure 5 demonstrates the relationship between modules
of the dynamic scheduler. The scheduler is invoked in each
time-slice to perform the following sequence of operations:
• Query Array State obtains execution statistics from the

array hardware, updates corresponding scheduler data
structures, and identifies pages to be removed, including
pages that terminated or exhibited low firing activity.
• Deadlock Detect verifies that a resident computation is

making progress. Failure to detect reasonable progress
on the array forces the scheduler to invoke deadlock
detection and resolution algorithms: bufferlocks are
handled as described above, and deadlocked processes
are killed.
• Schedule computes available array resources after remov-

ing the nodes that terminated or exhibited low firing
activity. It then attempts to pack the array with the
“frontier” priority list nodes that are expected to make
progress if scheduled. The scheduler inserts special “stitch”
segments to buffer the contents of streams crossing tem-
poral partitions. This module’s output is a page sub-
graph, guaranteed to fit on the array, to be scheduled in
the following time-slice.
• Resource Allocation assigns the subgraph nodes to spe-

cific physical compute pages and memory blocks.
• Reconfigure issues a sequence of commands to load the

subset of nodes selected by the previous modules and to
resume execution.

2.2 Analysis of Performance
Figure 3 shows performance results for one SCORE

application, a wavelet-based image encoder that requires
30 physical pages for a fully spatial implementation. The
vertical axis shows the total execution time to encode a
512 × 512 bitmap, and the horizontal axis shows the array
size (in compute page/configurable memory block pairs).
Performance was measured on a cycle-level array simulator.
Two curves are shown on the diagram—the execution times
on a simulated real and a simulated idealized system; the
latter does not include the run-time computational overhead
of the scheduler.

Both curves exhibit expected performance scaling behav-
ior. In general, more hardware makes for an equal or lower
execution time. However, this trend is not strictly monoton-
ic in the hardware size due to anomalous effects in the dy-
namic scheduler. The scheduler implementation was heav-
ily optimized; all non-essential components were eliminat-
ed, and remaining code was redesigned to improve memory
allocation and layout of data-structures in an attempt to
reduce run-time overhead while maintaining schedule qual-
ity. However, the average run-time overhead observed from
the results on Figure 3 is still about 36% of the total ex-
ecution time. Similar high run-time overhead is observed
with other applications, including JPEG and wavelet codecs.
Having no basis for comparison, little can be concluded

Wavelet Encoder Total Execution Time

0

1

2

3

4

5

6

7

8

6 8 10 12 14 16 18 20 22 24 26 28 30

Array Size (CP/CMB pairs)

E
xe

c
T

im
e

(M
C

yc
le

s)

Ideal System (no sched. ovhd.) Realistic System

Figure 3: Wavelet Encoder (30 pages): Total execu-
tion time with the fully dynamic scheduler.

about scheduling quality even in an idealized system, but
clearly more complex algorithms than the one implemented
would be required to further improve application perfor-
mance. With high run-time overhead an attempt to improve
the run-time scheduler quality may further constrain the set
of practical applications for SCORE.

The dynamic scheduler provides somewhat acceptable
results for applications with very large (100,000s of cycles)
or unlimited total execution time, even with its average
run-time scheduling overhead of 119,000 cycles per time-
slice. However, high scheduling overhead makes a SCORE
implementation inefficient in the following cases:
• The performance of applications with short total execu-

tion time (e.g. below 100,000 cycles) is dominated by the
run-time overhead of scheduling for the first time-slice.
• When the number of pages in a closed feedback loop is

larger than the number of physical pages, the amount
of useful computation per time-slice will be limited by
the number of delays (tokens) in the feedback loop. If
this number of delays is small compared to the recon-
figuration and scheduling time, then reconfiguration and
scheduling overhead will dominate useful computing time.
This is a similar phenomenon to virtual memory thrash-
ing that occurs when the working set does not fit into
available physical memory.

Since our micro-architectural design exhibits array recon-
figuration time on the order of only 10,000 cycles, dynamic
scheduling becomes the primary bottleneck preventing effi-
cient execution of the aforementioned applications.

3. SPACE OF SCHEDULING SOLUTIONS
The problem of low run-time overhead scheduling of

data-flow graphs is not new and has been solved for some
restricted data-flow models, such as synchronous data-flow
(SDF) [1]. Under SDF, for example, the data token input
and output rates of individual nodes are static, permitting a

Timing Placement
Routing

Resource
Allocation

Sequence
Temp Partition

DYNAMIC
(run-time)

STATIC
(load-time)

2 3 4 5 61

run-time load-time

CAD
Fully Static
Quasi-Static

Fully Dynamic

Timeslice
Sizing

Figure 4: Space of scheduling solutions, which includes (1) FPGA CAD, (2) a fully static (e.g. SDF), and (6)
a fully dynamic scheduler (e.g. Section 2). Quasi-Static scheduler (3) is discussed in Section 4.

Runtime Scheduler

QueryArrayState

Schedule

DeadlockDetect

Resource Allocation

Reconfigure

Figure 5: Fully Dynamic Scheduler: module flow in
the critical loop.

compiler to compute specific buffer sizes and verify deadlock
free operation prior to execution. SDF scheduling leverages
this knowledge of application behavior by computing near
optimal schedules statically, completely avoiding run-time
overhead. However, a dynamic scheduler makes no a priori
assumptions about application behavior and operates purely
by observing instantaneous computation progress. While
a dynamic scheduler allows flexibility in handling dynamic
data-driven behavior and run-time graph construction, it
comes at the cost of high run-time overhead.

Notice that in both extremes of fully dynamic and fully
static scheduling, the same basic set of operations is per-
formed: computing node firing sequence and timing, and
allocating physical resources to nodes and communication
links. What separates these approaches is the time when
scheduling decisions are made. We must recognize these
extremes and the space between them in order to understand
the opportunities that exist for low overhead/high quality
scheduling.

In [10] Lee forms a taxonomy of scheduling solutions and
explores the space between fully static and fully dynamic
approaches. Lee attempts to find a compromise between a
low overhead static and a high overhead dynamic schedul-
ing for applications with data-dependent data-flow. Lee
demonstrates efficient solutions, combinations of static and
dynamic scheduling techniques required to handle BDF and
IDF. For those data-flow models, although it is impossi-
ble to deterministically optimize the statically computed
schedules, good compile-time decisions frequently remove

the need for dynamic scheduling or load balancing [9, 7,
8].

We wish to build and expand on the taxonomy in [10]
by identifying its analogue for our system. For SCORE
we define five specific inter-dependent steps that must be
performed to schedule a design on a reconfigurable array
(see Figure 4). One way to represent a spectrum of
run-time resource management solutions for our system is as
a one-dimensional space of arranged scheduling steps. Each
point represents a scheduling solution and cuts the space
into two parts: steps performed dynamically and statically.
For example, a point marked as 3 represents a scheduling
solution where steps to the left (Timing and Timeslice
Sizing) are performed dynamically (at run-time) and steps
to the right (Place/Route, Resource Alloc, and Sequence/
Temp Partition) are performed statically (at application
load/install time).

Figure 4 shows six possible scheduler implementations
that differ in run-time complexity and overhead as well
as scheduling optimality. The boundaries between these
steps are not rigid due to close interdependence between
operations. Nevertheless, we shall use this diagram to
represent feasible implementations of run-time resource
management solutions for SCORE.

Let us look at each scheduling step in detail.
• Sequence/Temporal Partitioning partitions the graph in-

to a sequence of precedence-constrained, schedulable sub-
graphs. A schedulable subgraph is one that “fits” on the
array; each virtual page requires a physical CP; each
user memory segment—a CMB; and each stream cross-
ing a temporal partition boundary must be buffered by
a CMB. While computing the sequence is generally a
straight-forward process constrained only by graph topol-
ogy, temporal partitioning with optimization(s) creates
an NP-hard problem. Optimizations include minimiz-
ing buffer requirements, maximizing hardware utiliza-
tion, avoiding cuts in graph cycles to prevent thrashing,
and increasing temporal locality of intermediate data.
• Resource Allocation maps the schedulable subgraphs

down to actual physical resources in an “ideal array”
without routing constraints. Virtual pages are assigned
to physical CPs; virtual memory segments are assigned
to CMBs; and memory is allocated in the assigned
CMBs. This step primarily attempts to maximize
on-chip CMB memory utilization in an effort to reduce
transactions with slower primary memory.
• Placement/Routing maps the nodes of the “ideal array”

onto the same size real array with a network that con-
strains routing. This step may fail if no assumptions were
previously made about the array’s routing structure nor

about its physical layout. Should routing or placement
fail, the scheduler may return to Temporal Partitioning
and repeat that step with tighter constraints.
• Timeslice Sizing (Subgraph Execution Time) computes a

time interval for each schedulable subgraph to be resident
on the array. This step closely depends on Temporal
Partitioning, allocated buffer sizes, and I/O token rates
intrinsic to individual nodes.
• Timing is responsible for cycle-by-cycle operation of the

array hardware. Software tools such as those in FPGA
CAD flows (point 1) compute conservative timing stati-
cally for FSMs, data-paths, and communication compo-
nents in a design. However, the SCORE scheduler relies
on the array hardware to support dynamic timing using
network interfaces with flow control and ability to stall
compute pages (CPs) and configurable memory blocks
(CMBs). Similarly, microprocessors use score-boarding
to tolerate variable delay in memory and arithmetic oper-
ations. Flexible timing enhances the model’s robustness
to target device changes, enabling a scheduler to manage
resources on an array of any size and/or family as long
as common reconfiguration commands are supported and
data integrity is guaranteed by the communication pro-
tocol. Contrast this with existing FPGA CAD tools that
severely limit design scalability and compatibility among
target devices.

Independent of implementation details, every SCORE
run-time scheduler is responsible for each of the steps above.
Some steps (e.g. Timing) may be implemented efficiently in
array hardware, thus obviating direct involvement of the
run-time software scheduler. Figure 4 marks 1 through 6 as
clear places where cuts, that divide the space into dynamic
and static sub-spaces, can turn into implementations. A
complete discussion of the proper balance of efficiency,
functionality and flexibility is beyond of the scope of this
paper. Below we summarize issues driving the selection of
specific solutions based on the underlying implementation
requirements.
• Run-Time overhead is the most obvious. The sche-

duler at 1 incurs no run-time overhead, but the over-
head gradually increases as the scheduler implementa-
tion performs more steps at run-time. Run-Time over-
head depends heavily on the granularity of scheduler
involvement in application execution and on scheduling
algorithm complexity.
• Scheduling quality is highly dependent on the schedu-

ler’s knowledge of application behavior, predicted and
observed. For schedulers performing the majority of
steps statically, accurate prediction of application be-
havior is critical for schedule quality (e.g. in SDF, close-
to-optimal schedules can be constructed statically). As a
scheduler performs more steps at run-time (i.e. moving
from 2 toward 6), application behavior can be monitored,
not only predicted. For every scheduler in between 2

and 6 both accuracy of predicted and currency of ob-
served information determine scheduling quality. There
is a tradeoff between the age of an observation and the
overhead of collecting it. Presumably, if array state is
monitored continuously, a dynamic scheduler would be a
superior if costly solution.
• Advanced SCORE features may be supported in so-

lutions that perform more steps dynamically. SCORE
permits dynamic instantiation of graph nodes and cre-

ation of subgraphs at run-time, allowing a computation
to be composed dynamically and sharing the array bet-
ween applications. These features require Resource Allo-
cation to map virtual to physical resources at run-time.

Every solution in the space outlined above can implement
the complete semantics of SCORE, but only a subset
will perform efficiently. Independent of the actual choice,
a great variety of control-dominated computations can
be expressed without restrictions (compression, sorting,
selection and many others), allowing efficient exploitation
of the powerful semantics of SCORE in a low overhead
scheduling implementation.

4. QUASI-STATIC SCHEDULER
Having analyzed in the previous section several points

in the space of scheduling solutions, here we describe a
viable and efficient implementation that corresponds to
point 3 on Figure 4. We call the implementation a
quasi-static scheduler because it adapts to slowly varying
run-time characteristics (graph composition and firing rates)
by recomputing a high quality, static schedule only when the
computation graph changes substantially.

4.1 Basic Implementation Principles
The quasi-static scheduler expands on existing work to

map synchronous data-flow (SDF) programs to uni- and
multi-processors [1]. An SDF program is a data-flow graph
whose computational nodes (actors) communicate via arcs
using the same streaming discipline as SCORE (an arc
is a FIFO with logically unbounded capacity). Analyses
and algorithms for SDF can be adapted for SCORE by
equating a page with an actor. SDF is well established in
the literature and has been successfully used to map signal
processing algorithms to a variety of hardware platforms.

Scheduling SCORE for a hybrid reconfigurable architec-
ture differs in two key ways from scheduling SDF for mi-
croprocessors. First, the hardware models have different
execution costs, and hence require different optimization
criteria for scheduling (discussed below). Second, SDF ac-
tors are restricted to having static input/output rates (e.g.
an adder that repeatedly consumes two inputs to produce
one output), whereas SCORE pages may have dynamic in-
put/output rates. Dynamic rates make it impossible to
determine a static bound on the run-time requirements for
buffer memory. In the absence of such a bound, the SCORE
scheduler computes a quasi-static schedule from average in-
put/output rates and makes an allowance at run-time for
expanding stream buffers and modifying the schedule.

The reconfigurable architecture of SCORE has different
execution costs than a microprocessor running SDF and
hence requires different optimization approaches. First, we
note that an SDF program for a uni-/multi-processor tar-
get is typically scheduled at compile time as a collection
of single-threaded instruction sequences, one per micropro-
cessor, with each sequence repeatedly evaluating a subset
(sub-graph) of actors. SDF techniques tend to cluster com-
municating actors in the same microprocessor, running them
time-multiplexed with memory-buffered communication. In
the uni-processor case, this style is inevitable because there
is only one processor; in the multi-processor case, it is be-
cause inter-processor communication primitives are more
expensive than memory access, typically consuming 10s to
100s of cycles. Given that, an SDF schedule optimizes for

minimum local buffer sizes by evaluating each actor a min-
imum number of times in turn. The cost of switching to
evaluate a different actor is low, potentially as inexpensive
as incrementing the program counter or taking a branch
(several clock cycles), so frequent actor switching is accept-
able. On reconfigurable hardware, however, switching to
evaluate a different page is expensive, requiring saving and
restoring a page context (hundreds to thousands of clock
cycles). Consequently, a SCORE schedule prefers to reuse
(re-evaluate) a page for many consecutive cycles to amortize
the cost of reconfiguration. On the other hand, the reconfig-
urable hardware makes inter-page communication primitives
cheap, ideally offering single-cycle pipelined send/receive.
Consequently, SCORE prefers to schedule communicating
actors concurrently on separate pages.

It is important to demonstrate that the quasi-static
scheduler provides the same computational semantics as the
dynamic scheduler. That is, for correct execution of any
SCORE graph, time-multiplexed execution using physically
bounded buffers must get exactly the same functional result
as would a fully spatial implementation with unbounded
buffers. To see why this is true, note the following:
• The behavior of a SCORE graph is completely deter-

ministic and independent of operator timing. This is
a consequence of the discipline that an operator can
fire only when input data tokens are available. Hence
pages can be scheduled in any order without changing
the semantics of the graph.
• A schedule that includes every virtual page will give

every page an opportunity to fire on each schedule
iteration.
• The quasi-static scheduler will iterate through its sched-

ule until all pages have completed. Hence, regardless of
the order in the schedule, every page will be given an
opportunity to consume all of its inputs and produce all
of its results.
• As long as the array has not deadlocked, the virtual

graph will make forward computational progress on every
schedule iteration.
• Should bufferlock occur, the scheduler will expand the

full buffers to provide the illusion of unbounded buffers
(up to the available memory in the system).

Therefore, any graph executing without a deadlock on un-
bounded hardware, will not deadlock when time-multiplexed
onto limited physical resources by the quasi-static schedu-
ler2, and the quasi-static schedule will produce the same
functional results as the unbounded case.

4.2 General System Tool Flow
The quasi-static scheduler consists of a static schedule

generator and a run-time reconfiguration engine, as shown
in Figure 6. The modules of the quasi-static scheduler
are similar to those of the dynamic scheduler (Figure 5),
but they have been factored into two components so that
certain tasks are performed less frequently than every
time-slice. The inner loop of the scheduler, i.e. the work
that incurs run-time overhead at every time slice, has thus
been substantially reduced. The infrequent component is
the schedule generator, which analyzes the virtual page
graph plus profile information from previous application
runs to produce a schedule in the form of a script of array

2A deadlock can occur only if application’s total buffering
requirements exceed the physical system memory.

Time Step
Array Resource 1 2 3
CP0 A B C
CP1 D J
CMB0 K[0:10] K[0:10] M[11:20]
CMB1 N[2:20] O[40:45] P[25:39]

Table 1: A static schedule shows ordered virtual
nodes assigned to array resources. Each row corre-
sponds to a compute page (CP) or a configurable
memory block (CMB), and each column represents
a time step. Segments are annotated with their
locations within CMBs.

reconfiguration commands. The frequent component (inner
loop) is the reconfiguration engine, which oversees execution
of the graph by issuing script commands to the hardware.
Particular differences from the dynamic scheduler are as
follows:
• Query Array State was drastically simplified to only

detect and process “done” signals from nodes.
• Deadlock detection and resolution are not currently

implemented, but will be added in the future. It is
important to note that deadlock detection remains cheap
under quasi-static scheduling, requiring page activity
counters in hardware and minimal house-keeping in
software. Resolving deadlock remains expensive and
typically requires regenerating a schedule script.
• Schedule and Resource Allocation were moved to the

static schedule generator.
• Reconfigure was replaced by a light-weight script execu-

tion engine.
By simplifying or eliminating required run-time compo-

nents, the quasi-static scheduler incurs on average only one
tenth of the per-time-slice run-time overhead of the fully
dynamic implementation. More comprehensive results will
be discussed in following sections.

4.3 Static Schedule Generator
The static schedule generator analyzes the virtual page

graph and application execution profile to compute a re-
configuration script (Figure 6). We described the first two
modules Partition and Resource Allocation in detail in Sec-
tion 3. The last module Generate Reconfiguration Script
emits array reconfiguration commands arranged to maxi-
mize parallel configuration of nodes on the array.

The static schedule generator produces a schedule de-
scribable as a table containing a fixed sequence of resource
mappings, as shown on Table 1. Each column represents a
scheduling step (time-slice), while each row corresponds to a
physical array component, namely a compute page (CP) or
configurable memory block (CMB). The table also contains
a CMB memory location for each segment.

To simplify the job of the run-time reconfiguration engine,
the schedule emitted by the static schedule generator is
represented as a script of commands, instead of a table.
Two types of commands are used: (1) control commands
(e.g. wait for the next time-slice, execute N cycles, etc.)
interpreted by the run-time script execution engine, and
(2) reconfiguration commands (e.g. transfer configuration
bitstream from CMB to CP, set CMB memory bounds
registers, etc.) forwarded directly to the array.

Runtime Scheduler

Schedule Generator

Reconfig Script

QueryArrayState

Reconfigure

Partition

Resource Allocation

Gen Reconfig Script

Figure 6: Quasi-Static Scheduler: module flow in
static and run-time components.

4.4 Hardware Support
The key difference between a fully static scheduler (point

2 in Figure 4) and the quasi-static scheduler (point 3) is the
time the Timeslice Sizing step is performed. The Timeslice
Sizing step computes a time interval for each schedulable
subgraph to be resident on the array. While a fully static
scheduler must specify a priori precise periods of time to
schedule each subgraph, our quasi-static implementation
relies on special array hardware to detect stall conditions
on the array. On detection of stall conditions, the run-time
reconfiguration engine moves to the next scheduling step.

Stall conditions are those that impede any progress of the
resident subgraph, such as an empty input or full output
buffer. The reconfiguration script includes commands to
allow CMBs and the global array controller to detect
these conditions. When a stall condition occurs, the
array controller issues an interrupt to invoke the run-time
reconfiguration engine on the microprocessor. The engine
then schedules the next subgraph in the static schedule.
Experiments have shown this simple mechanism to be
effective and inexpensive. A typical subgraph may run
anywhere from ten thousand to one hundred thousand
cycles, hence precise interrupts are not required from the
stall detection. A small latency of 10-100 cycles in reporting
can easily be tolerated, permitting a simple hardware
implementation.

The fully dynamic scheduler uses a fixed time-slice for the
Timeslice Sizing step and analyzes run-time page activity
in Sequence and Resource Allocation. In contrast, the
quasi-static scheduler with stall detect analyzes CP activity
in Timeslice Sizing and uses predicted application behavior
for other steps at load-time. The quasi-static scheduler uses
buffer sizing to control subgraph execution time between
scheduler actions, i.e. vary time-slice size (Section 5.2).

5. QUASI-STATIC SCHEDULING
ALGORITHMS

5.1 Temporal Partitioning
Partition, the key component that determines scheduling

quality, is the first step performed by the static schedule
generator. It computes the execution sequence of nodes

A B0.1token
firing 1 token

firing

Expected Firing Rate
0.1firing

cycle1firing
cycle

Figure 7: Rate mismatches between co-resident
nodes lead to hardware underutilization.

and divides a virtual page compute graph into schedulable
subgraphs to be time-multiplexed on the reconfigurable
array.

The static scheduler uses graph topology and node to-
ken emission/consumption rates obtained through profiling
to predict application behavior. While it is generally ad-
vantageous to make neighbor nodes co-resident, effectively
creating pipelines of pages, an I/O token rate mismatch bet-
ween the neighbors could result in a serious under-utilization
of array hardware (discussed below). The static schedule
generator attempts to improve performance by computing
near-optimal graph partitioning to maximize array hardware
utilization.

5.1.1 Performance Model
An I/O rate mismatch between co-resident adjacent nodes

frequently leads to significant underutilization of array
hardware. A simple example in Figure 7 shows two virtual
pages, A and B, co-scheduled on a reconfigurable array with
two CPs. Each page has intrinsic I/O rates, expressed in
units of tokens/firing. Page A is a slow producer and limits
the ability of page B to fire. A can fire at the rate of 1 firing

cycle
,

whereas B only at 0.1 firing
cycle

(i.e. B fires once every ten

cycles when a token appears on its input). Let us assume
that virtual node A is mapped to CP0 and B to CP1 on
the array. Intrinsic I/O rates of each node allow CP0 to
be utilized 100% of the time and CP1 only 10%, leading to
average CP utilization of (1 + 0.1)/2 = 0.55 = 55%.

Average CP utilization is a convenient measure of schedul-
ing quality for a specific device size. The SCORE array
simulator records the number of cycles each compute page
(CP) fired during execution, and computes an observed av-
erage CP utilization:

UCP =

∑N
i=1 Fi

MS ∗N (1)

where N is the array size (the number of CPs), Fi is the
number of cycles that CP i fired, and MS is the makespan
(total execution time) for an application. Note that, as
expected, Equation 1 demonstrates an inverse relationship
between average CP utilization UCP and the total execution
time MS.

While computing the observed average CP utilization
permits simple comparison between partitioning algorithms,
it does not readily identify what a partitioning algorithm
should do to improve application performance. To fully
understand optimizations and tradeoffs involved in temporal
graph partitioning, a mathematical model based on SDF
scheduling techniques was developed to define and quantify
a relationship between average CP utilization and the total
execution time in an ideal system (no scheduling overhead).
Average CP utilization was also defined independently of

the execution time, based solely on individual nodes in
each partition. Detailed discussion of this model is omitted
for brevity, but the model is able to predict the observed
average CP utilization with less than 5% average error in
our experiments.

While application total execution time depends on the
size of the input dataset, average CP utilization depends
only on the schedule (e.g. individual co-resident pages, rate
mismatches, etc). The Partitioner uses the mathematical
model to estimate average CP utilization for a given can-
didate partition set and attempts to maximize utilization.
The goal is not to achieve 100% CP utilization but to attain
the highest possible CP utilization for a specific array size
(resulting in the lowest total application execution time).

5.1.2 Temporal Partitioning Algorithms
Optimal graph partitioning under multiple independent

simultaneous constraints (e.g. CP/CMB count) is an NP-
hard optimization problem. To study the problem in detail,
we have implemented two heuristic and one exhaustive
search partitioner to be used as a reference.

Topological Partitioner uses a simple greedy packing
algorithm with a precedence constrained traversal order.
The algorithm starts by topologically sorting graph nodes,
then iterates over the resultant node list forming schedulable
subgraphs. Possessing only a very limited global view of
the entire graph, this algorithm benefits from a special
pre-clustering pass that decreases the number of streams
crossing temporal partition boundary. The pre-clustering
pass repeatedly merges any two clusters together as long
as the resulting cluster I/O stream count is lower than the
aggregate I/O stream count of the two separately. With
topological sort implemented by a depth-first search, the
complexity of this algorithm is O(|E|), where |E| is the
number of graph edges.

Balanced N-way Mincut is a flow-based mincut par-
titioning algorithm, based on Wong’s temporal partitioning
for FPGA circuits [11], and adapted to enforce precedence
constraints. In its core, the algorithm performs a mincut on
the graph and examines resulting partitions. The partition
containing the nodes with the highest scheduling precedence
is grown or shrunk until it fits on the array. To grow or
shrink a partition, the algorithm augments/evicts a selected
node and repeats the process until a satisfactory partition
is obtained. The partitioner uses the average CP utilization
model to select nodes to move between partitions. Its goal
is to maximize predicted average CP utilization. This algo-
rithm complexity is O(|V ||E|), where |V | is the number of
graph vertices and |E|—edges.

Exhaustive Search partitioner examines every possible
schedule to find the one with highest average CP utilization.
This algorithm is our performance reference for evaluating
the quality of the two heuristic partitioners. Although in
general the number of candidate schedules the partition-
er must examine grows exponentially with graph size, the
complexity is largely constrained by graph precedence con-
straints and simple branch-and-bound heuristics that avoid
clearly inefficient solutions. Nevertheless, computing opti-
mal partitioning for a specific array size may take hours.
For example, for the 30 page wavelet encoder mapped on
6 CP array, the algorithm consumes more than 18 hours
on a P3 500Mhz system, examining in excess of 101 million
candidates.

JPEG Encoder Average CP Utilization

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

4 5 6 7 8 9 10 11 12 13 14 15

Array Size (CP/CMB pairs)

U
ti

liz
at

io
n

Exhaustive Topological Mincut

Figure 8: JPEG encoder: comparison of average CP
utilization with three implemented partitioners.

JPEG Encoder Total Execution Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4 5 6 7 8 9 10 11 12 13 14 15

Array Size (CP/CMB pairs)

E
xe

c
T

im
e

(M
C

yc
le

s)

Exhaustive Topological Mincut

Figure 9: JPEG encoder: comparison of total
execution time with three implemented partitioners.

Table 2 presents cost for each heuristic partitioning
algorithm for varying graph size and target array size.
Figure 8 summarizes partitioning results for the 13-page
JPEG encoder application.

The plot in Figure 8 demonstrates that, of all the parti-
tioners, the Exhaustive Search produces the schedule with
highest average CP utilization. A surprising result is that
the Topological and Balanced Mincut heuristic partitioners
in the worst case perform within 17% of the optimal on
JPEG encoder and other applications. Another unexpect-
ed result is that neither heuristic partitioner continuously
outperforms the other, although they differ greatly in algo-
rithmic complexity.

Figure 9 shows JPEG encoder total execution time using
the different partitioners. The expected inverse relationship
between the total execution time and the average CP
utilization holds, validating our hypothesis that increased
utilization is a good predictor of reduced execution time.

5.2 Buffer Allocation
The quasi-static scheduler uses stall detect (Section 4.4)

to perform the Timeslice Sizing step and to determine the
amount of time each subgraph executes. Buffer sizing is the
primary mechanism by which the static schedule generator
controls the Timeslice Sizing, because the buffer size directly
determines the “amount of work” a given subgraph can per-

Cost of Partitioning Algorithms (millions of CPU cycles)
min Balanced Mincut Topological

App Name |V | |E| size min 25% 50% min 25% 50%
JPEG enc 20 54 4 3.0 3.4 0.9 0.6 0.7 0.7
JPEG dec 16 56 3 1.8 1.1 1.3 0.3 0.3 0.3
Wavelet enc 36 56 6 3.3 2.1 4.8 0.5 0.5 0.5
Wavelet dec 33 51 6 4.4 3.4 5.5 0.3 0.3 0.3

Table 2: Time cost for computing a partition set using Balanced N-way Mincut and Topological partitioners.
For each partitioner, we show the application-specific costs for three array sizes: minimum feasible (min),
quarter spatial (25%), half spatial (50%).

form before stalling and forcing a reconfiguration. The cur-
rent implementation of the quasi-static scheduler allocates
the same amount of memory for all buffers, frequently result-
ing in under-utilized CMB memory and leading to needless
data transfers between the array and the primary memory.
We are currently working on a solution that allocates buffer
sizes proportional to application requirements and attempts
to balance CMB memory utilization with reconfiguration
time and limited off-chip bandwidth.

6. ANALYSIS OF RESULTS
This section is a comparative summary of application

performance results obtained with the fully dynamic and
quasi-static schedulers. The chosen applications, JPEG
and wavelet codecs, represent a typical workload for the
target platform (FPGA/microprocessor hybrid). Selected
because they combine data-dependent dynamic and static
data-flow components, these applications are well suited for
performance analysis with the quasi-static scheduler.

Figure 10 shows the total execution time of the JPEG
decoder application (12 pages) for various array sizes, using
the dynamic and quasi-static schedulers. We show two sets
of curves: (1) total application execution time on an ideal
array simulation (without scheduling overhead), and (2)
on a realistic array simulation (with scheduling overhead).
The no-overhead curves demonstrate conclusively that the
quasi-static approach yields higher quality schedules than
the dynamic approach. The execution time reduction is a
factor of 2 on average. Similar results were observed for the
JPEG encoder, the wavelet encoder, and wavelet decoder,
with speedups of 2.2 to 5.7 (see Table 3). In addition, we find
that the scheduling overhead (i.e. the difference between the
overhead and no-overhead curves) is dramatically smaller
for the quasi-static scheduler than for the dynamic one,
typically by a factor of 10.

Figure 11 shows the total execution time of the JPEG
decoder, with scheduling overhead, for several schedulers.
The so-called static scheduler is a simple variation on the
quasi-static scheduler where we disable stall detection, so
as to use only fixed time-slices. This variation represents
point 2 in Figure 4, a more static scheduler. Comparing
execution times for the quasi-static and static schedulers,
we find that the stall-detect feature contributes a factor
of about 2 to 3 in the performance of the quasi-static
scheduler. Interestingly, the static scheduler outperforms
the dynamic scheduler. Both use the fixed time-slice model,
with identical time-slices (250,000 cycles), but the static
scheduler gains an edge from its global rather than greedy
analysis. Clearly, the perceived advantages of the fully
dynamic scheduler, such as the ability to adapt scheduling
decisions to match data-flow patterns, are not realized at

the feasible scheduling granularity.
In summary, improvement in the scheduling quality of

the quasi-static scheduler can be attributed to several
factors:
• the global view of the graph topology, instead of limited

“frontier” (BFS) in the dynamic scheduler,
• using application execution profile to predict graph be-

havior, making an educated guess, instead of dynami-
cally adapting scheduling decisions based on stale array
state, and
• fine-grained hardware supported stall detect to automat-

ically adapt Timeslice Sizing to dynamic changes in an
application, rather than using a fixed time-slice as in the
dynamic scheduler.

7. FUTURE WORK
To date, this work has not addressed the issue of low

hardware utilization using the quasi-static scheduler. A
close analysis of curves on Figure 8 shows that in the ideal
(no overhead) simulation the average CP utilization varies
from 47% in small to 20% in large array. Hence, over half
of the potential computing capacity of the array is lost to
CP stall and idle cycles. This is largely an artifact of co-
scheduling neighbor nodes with mismatched I/O rates. We
are working to address it (1) in the scheduler with techniques
to insert buffers to decouple rate mismatched nodes, and
(2) in the compiler with transformations (e.g. arithmetic
parallelization/serialization) that attempt to match rates
between neighbor nodes.

Neither the dynamic nor the quasi-static schedulers con-
siders the effects of routing and placement. Thus far, the
implementations assumed an “ideal” array; we plan to add a
page placement and routing engine in the near future. While
routing may not be a significant problem in small arrays
where crossbar switches are feasible, larger arrays demand
a more economical switching structure and require taking
advantage of locality in the computation graph.

8. CONCLUSION
SCORE attempts to eliminate barriers to efficient exploita-

tion of reconfigurable devices by using a paged virtual hard-
ware model that enables application compatibility, longevi-
ty and automatic performance scaling on larger hardware.
The run-time scheduler plays a key role by supporting the
abstractions of SCORE that gives a programmer expressive
power and flexibility. A poorly implemented scheduler may
drastically diminish the potential performance gains and
severely limit the model’s applicability.

We presented a taxonomy of scheduling solutions to demon-
strate that, in addition to the natural solution of a fully

App Size Realistic Simulation Ideal Simulation
(pages) Quasi-Static Static Quasi-Static Static

JPEG enc. 13 2.8 1.3 2.2 1.0
JPEG dec. 12 2.5 1.3 2.0 1.0
Wavelet enc. 30 4.5 1.6 3.3 1.1
Wavelet dec. 27 7.3 3.0 5.7 2.3

Table 3: Average reductions in application total execution time relative to the Fully Dynamic Scheduler.

JPEG Decode Total Execution Time

0

2

4

6

8

10

12

14

3 4 5 6 7 8 9 10 11 12 13 14 15

Array Size (CP/CMB pairs)

E
xe

cu
ti

o
n

 T
im

e
(M

C
yc

le
s)

Dynamic Real
Dynamic Ideal
Qstatic Real
Qstatic Ideal

Figure 10: JPEG decoder: Total execution time
comparison between quasi-static and dynamic sche-
dulers for both ideal and realistic array simulation.

JPEG Decode Total Execution Time

0

2

4

6

8

10

12

14

3 4 5 6 7 8 9 10 11 12 13 14 15

Array Size (CP/CMB pairs)

E
xe

cu
ti

o
n

 T
im

e
(M

C
yc

le
s)

Dynamic Real
Static Real
Qstatic Real

Figure 11: JPEG decoder: Total execution time
comparison between the fully dynamic, fully static
and the quasi-static scheduler obtained from a real-
istic array simulation.

dynamic scheduler, there exists a rich space of solutions of
varying complexity, quality, and restrictions on application
features. While all solutions preserve the semantic and ex-
pressive power of the SCORE compute model, only a subset
yields efficient practical implementations.

We demonstrated two scheduling approaches and found
the quasi-static approach to have superior schedule quality
and substantially lower run-time overhead than the dynamic
approach. Our quasi-static implementation reduced run-
time scheduling overhead by an average factor of 10, down
to 10,000 cycles per time-slice. The quasi-static implemen-

tation also reduced execution times by an average factor
of 3 for a set of applications containing both static and
data-dependent components. Without any code change or
recompilation, all applications execute using either schedu-
ler.

9. REFERENCES
[1] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee.

Software Synthesis from Dataflow Graphs. Kluwer
Academic Publishers, 1996.

[2] J. T. Buck. Scheduling Dynamic Dataflow Graphs with
Bounded Memory Using the Token flow Model. PhD
thesis, UC Berkeley, 1993.

[3] J. T. Buck. Static scheduling and code generation
from dynamic dataflow graphs with integer-valued
control streams. In Conference on Signals, Systems,
and Computers, November 1 1994.

[4] E. Caspi, M. Chu, R. Huang, N. Weaver, J. Yeh,
J. Wawrzynek, and A. DeHon. Stream computations
organized for reconfigurable execution (score):
Extended abstract. In Conference on Field
Programmable Logic and Applications (FPL ’2000),
pages 605–614. Springer-Verlag, August 28-30 2000.

[5] M. M. Chu. Dynamic runtime scheduler support for
score. Master’s thesis, UC Berkeley, 2000.

[6] A. DeHon. Reconfigurable Architectures for
General-Purpose Computing. PhD thesis, MIT, 545
Technology Sq., Cambridge, MA 02139, September
1996.

[7] S. Ha. Compile-Time Scheduling of Dataflow Program
graphs with Dynamic Constructs. PhD thesis, UC
Berkeley, 1992.

[8] S. Ha and E. A. Lee. Quasi-static scheduling for
multiprocessor dsp. In IEEE International Symposium
on Circuits and Systems, Singapore. Conference on
Signals, Systems, and Computers, June 1991.

[9] S. Ha and E. A. Lee. Compile-time scheduling of
dynamic constructs in dataflow program graphs. IEEE
Transactions on Computers, 46(7), July 1997.

[10] E. Lee. Advanced Topics in Data-Flow Computing,
chapter Static Scheduling of Data-Flow Programs for
DSP, pages 501 – 527. Prentice-Hall, Inc., 1991.

[11] H. Liu and D. F. Wong. Network-flow-based multiway
partitioning with area and pin constraints. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 17(1):50 – 59, January 1998.

[12] T. M. Parks. Bounded Scheduling of Process Networks.
PhD thesis, UC Berkeley, 1995.

