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There is no inherent characteristic forcing Field Programmable Gate
Array (FPGA) or Reconfigurable Computing (RC) Array cycle
times to be greater than processors in the same process. Mod-
ern FPGAs seldom achieve application clock rates close to their
processor cousins because (1) resources in the FPGAs are not bal-
anced appropriately for high-speed operation, (2) FPGA CAD does
not automatically provide the requisite transforms to support this
operation, and (3) interconnect delays can be large and vary almost
continuously, complicating high frequency mapping. We introduce
a novel reconfigurable computing array, the High-Speed, Hierarchi-
cal Synchronous Reconfigurable Array (HSRA), and its supporting
tools. This package demonstrates that computing arrays can achieve
efficient, high-speed operation. We have designed and implemented
a prototype component in a 0.4 m logic design on a DRAM process
which will support 250MHz operation for CAD mapped designs.

A common myth about FPGAs is that they are inherently 10
slower than processors. We see no physical limitations which would
make this true, but there are some good reasons why this myth
persists.

Looking at raw cycle times, we see that the potential operating
frequencies for FPGAs are comparable to processors in the same
process (See Table 1). The cycle time on a processor represents
the minimum interval at which a new operation on new data can be
initiated or completed. That is, it defines how fast we can clock the
computational and memory units and reuse them to perform subse-
quent operations. Since traditional FPGAs are not synchronous, it
is not as obvious what the native cycle time is for an FPGA. How-
ever, if we also take the FPGA cycle time as the minimum interval
at which we can launch a new datum for computation, then we can
identify a cycle time. For example, the XC4000XL-09 family has
a logic evaluation to clock setup time of 1.6 ns, and a clock-to-Q
time of 1.5 ns. If we take the minimum clock low and high-times of
2.3 ns each, we can define a cycle of 4.6 ns which leaves (4.6-1.5-
1.6)=1.5 ns for interconnect on each cycle. Similarly, Von Herzen
defined a 4 ns cycle on XC3100-09 and designed his signal pro-
cessing applications to this cycle time [11]. In Table 1, we see that
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these cycle times are within a factor of two of processors in the
same process.

In practice, however, the applications we see running at 200MHz+
on these FPGAs are few and far between. While the basic cycle time
for an FPGA is small, most contemporary FPGA designs run much
slower—more typically in the 25-70MHz range. Why do designs
run this much slower than the conceivable peak? We conjecture
there are several factors which contribute to the low frequency of
most FPGA designs:

1. no reason to run faster — Often the limited speed is all the
user wants or needs,and there is no application reason to run at
a higher cycle rate. For example, if the application is sample
rate limited at a modest sample rate, there is no requirement
to process data at a higher rate. Furthermore, when data
rates are limited by system components outside of the FPGA
or standards, the application may have no cause to run at a
faster rate. However, when such external or application limits
appear, it is often possible to reduce the hardware required by
running a more serialized design in less space (fewer gates,
smaller FPGA component) at the higher cycle rate achievable
by the FPGA.

2. cyclic data dependencies limit pipelineability – Cycles in
the flow graph define a minimum clock cycle time. We can-
not pipeline down to the LUT level within such cycles. We
can, however, run the design -slow [14] at the LUT-cycle
rate, allowing us to solve -independent problems simulta-
neously in the hardware space. If we do not have a number
of independent problems to solve, we can reuse gates and
interconnect at the LUT-cycle rate to solve the problem in
less area when the device has multiple contexts (e.g. DPGA
[6]).

3. inadequate tool support – Reorganizing a design to run at
this tight cycle rate can be a tedious task. While the basic
technology is known in the design automation world, typical
FPGA tools and design flows do not provide support for
aggressive retiming. In part this results from the traditional
glue-logic replacement philosophy which lets the user define
the base cycle and what has to happen within a cycle, rather
than taking a computational view which says that the user
defines a task and the tools are free to transform the problem as
necessary to map the user’s task onto the computing platform.

4. interconnect delays dominate – Interconnect delays depend
on the distance between source and sink and can easily dom-
inate all other delays. We were only able to define the tight
cycle times we did above by assuming very local communi-
cations. If we allowed even one cross chip delay time in the
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Design Feature Cycle Reference
XC4000XL-09 0.35 m 4.6 ns [20]
A10K100A-1 0.35 m 5.0 ns [1]
Strong Arm 0.35 m 5.0 ns [15]

Alpha 0.35 m 2.3 ns [10]
SPARC 0.35 m 3.0 ns [9]
Pentium 0.35 m 3.3 ns [4]
Alpha 0.35 m 1.7 ns [7]
HSRA 0.40 m 4.0 ns

5.0 ns cycle based on min min 2 5 ns

Table 1: Cycle Rate comparison at 0.35 m

Number of Registers 1 2 3 4 5 6 7 8 9 10

Percentage 72 16 4.5 2.2 1.3 0.96 1.2 0.46 0.12 0.11

Table 2: Benchmark-Wide Distribution of Registers Required between LUTs

cycle, the cycle time would increase significantly. This leads
us to believe that either we have to accept a much larger cycle
time, or we must limit all communications to local connec-
tions, as in [11]. As long as we must traverse an entire long
interconnect line in a single cycle, we are left where we can
only achieve the tight cycle for very stylized problems or with
heroic personal effort to design and layout the computation
entirely using local connections.

5. pipelining becomes expensive – In order to pipeline the
device heavily enough to run at this cycle rate, the design
needs a larger number of flip-flops for proper retiming. While
flip-flops are “relatively” cheap in many FPGAs, the typical
balance is roughly one flip-flop per 4-LUT. However, for a
fully pipelined design, the number of flip-flops required may
exceed the number of LUTs by a factor of 2–7 as we will see
in Section 2.

We see that items 1 and 2 are application oriented and can often
be mitigated by appropriate design. Items 3, 4, and 5 are architecture
and CAD related. The HSRA architecture,which we introduce here,
represents a direct attack on these architecture and CAD problems.
The result is a reconfigurable computing array capable of running
profitably on feed-forward and data-parallel designs at a cycle rate
competitive with microprocessor designs in the same process. For
designs with data-dependent cycles, the architectural techniques
studied here should mix well with multicontext FPGA techniques
(e.g. [6] [2] [13] [17]).

In the next two sections, we present additional evidence support-
ing the architectural issues of retiming balance (5) and interconnect
delays (4). In Section 4, we introduce our architecture and show
how it addresses these problems. Section 5 provides highlights
from our prototype HSRA design. Section 6 addresses the new
retiming problems introduced by our architecture and looks at the
net retiming requirements which it implies.

A necessary, but not sufficient, requirement for running at a mini-
mum, single-LUT delay cycle, as developed in the previous section,
is that the design be retimed so that there is at most one LUT evalu-
ation between any pair of registers. For fully feed-forward designs
(designs with no data dependency cycles), we simply add registers

at the outputs and retime [14] them until the pipelined design meets
this requisite property.

For cyclic designs, we can only pipeline up to the cycle rate
implied by the design. If the cycle rate is , we then run the design

-slow by replacing every register in the original design with a
bank of registers. The resulting design can now be pipelined and
retimed down to a cycle rate of one as required. The -slow design
will execute independent streams of computation, taking a new
input for each of the computations every ’th cycle and similarly
producing a new output every ’th cycle.

To understand the minimum register requirements necessary to
retime designs to run at the single-LUT cycle rate, we performed
these retiming transformations on a series of benchmark circuits.
That is:
1. Start with the delay targeted SIS [18] and Flowmapped [5] 4-

LUT networks for the IWLS93 benchmarks under 250 4-LUTs.
2. Determine cycle rate, , using SIS’s implementation of retim-

ing. (In concept, calculate the cycle bound by counting the
delays and registers around every internal loops and finding the
largest ratio of delays to registers in any loop. Effectively, we
make an arbitrary number of registers available at the output of
the network so that only the inherent cycle bound determines
the cycle rate of the circuit.)

3. Replace every register in the original design with registers.
4. Add sufficient registers on output of design for pipelining.
5. Use SIS to retime registers in the network.
6. Collect statistics on the properly retimed design.

Table 2 shows the distribution of register depths between LUTs
across this benchmark set. Table 3 shows the general results of
this mapping exercise. While unit depth between registers does
remain the single largest depth, there are a significant number of
cases which require greater depth. Benchmark wide, the designs
require, on average, 1.7 registers between adjacent LUT pairs.

Earlier results for non-retimed circuits [16] suggested that a
single register was worthwhile to integrate into the functionality of
every logic block. This data alone suggests that the balance of one
flip-flop per LUT on average is not bad. For some cases the pipeline
penalty for such a distribution is moderately small, but for some it
can be a factor of 2–7 greater. Since flip flops are small (e.g. 4K 2,
maybe 10K 2 with switching and configuration to allow optional
selection) compared to the total amortized area for a LUT with
reasonable interconnect (500K 2–1M 2), it may be worthwhile to
tip the balance to more than one flip-flop per LUT, as long as this
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C- add
orig. slow pipe Total

Design LUTs cycle stg Regs

C17 2 2 1 1 2
shiftreg 2 1 1 0 3

daio 3 2 1 1 5
lion 3 2 1 1 3

train4 3 2 1 1 3
b1 4 2 1 1 4

cm82a 4 3 1 2 7
majority 4 3 1 2 4

lion9 4 2 1 1 4
dk27 5 2 1 1 5
parity 5 3 1 2 5
con1 6 3 1 2 6
s27 6 3 2 2 9

cm151a 8 4 1 3 13
mc 9 3 2 2 16

bbtas 9 2 2 1 14
cm138a 9 3 1 2 12
cm42a 10 2 1 1 10
cm152a 11 4 1 3 11

tav 12 3 1 2 16
cm150a 15 5 1 4 24
cm162a 15 4 1 3 32

tcon 16 2 1 1 16
cm163a 17 4 1 3 33
cm85a 19 4 1 3 22
xor5 19 5 1 4 23
cmb 20 5 1 4 35

train11 20 4 2 3 25
i1 22 1 4 3 46

beecount 22 4 3 3 31
x2 23 4 1 3 39

misex1 23 4 1 3 37
cu 25 4 1 3 48

dk512 26 3 3 2 39
s208 28 5 1 7 65
pm1 29 4 1 3 57
pcle 29 4 1 3 54
ex5 30 3 3 2 35

dk17 30 4 3 3 45
mult16b 31 2 1 1 31

my adder 32 17 1 16 392
decod 32 3 1 2 34

C- add
orig. slow pipe Total

Design LUTs cycle stg Regs

unreg 32 3 1 2 49
cc 33 3 1 2 54

dk15 34 4 3 3 45
mult16a 35 16 2 1 167

ex3 36 3 3 2 39
count 37 7 1 6 158
pcler8 40 5 1 4 106
rd53 40 5 1 4 50
ex7 40 4 3 3 53

squar5 41 5 1 4 58
comp 41 6 1 5 61
bbara 42 3 3 2 43
s298 42 4 3 3 80
ex4 44 4 3 3 67
i3 46 4 1 3 50

sqrt8 47 5 1 4 65
o64 48 6 1 5 62

sqrt8ml 50 11 1 10 107
mux 53 7 1 6 79
dk14 55 4 3 3 66
opus 56 5 3 4 78

misex2 57 4 1 3 87
mark1 58 4 3 3 88
s344 58 4 4 1 105
s349 58 4 4 1 105
ldd 58 4 1 3 87

s382 60 3 3 1 89
s444 60 3 3 1 89
s400 60 3 3 1 89
b9 61 5 1 4 117

mult32b 62 2 1 1 62
mult32a 67 32 2 1 591

cht 68 4 1 3 133
sct 72 4 1 3 110

C499 74 5 1 4 178
C1355 74 5 1 4 178

lal 76 4 1 3 118
s420 76 6 3 5 134

i2 77 6 1 5 94
bbsse 78 4 4 3 97
sse 78 4 4 3 97

s386 84 4 4 3 119

C- add
orig. slow pipe Total

Design LUTs cycle stg Regs

z4ml 85 5 1 4 97
ex6 87 5 4 4 115

9symml 87 7 1 6 124
5xp1 88 5 1 4 119

c8 91 5 1 4 150
s526 92 4 3 4 156
s641 95 9 5 8 399
s526n 95 4 4 3 168
s713 96 9 5 8 406
ex2 102 4 4 2 116

f51m 105 5 1 4 137
i4 110 5 1 4 200

s510 110 4 4 3 156
C432 119 11 1 10 355
apex7 126 6 1 5 300
mm9a 128 18 8 17 701
sao2 136 6 1 5 164
C880 141 9 1 8 462
s838 141 14 3 13 584

kirkman 142 5 4 4 171
i6 144 3 1 2 175

cse 144 5 4 4 169
mm4a 160 11 6 10 294
C1908 162 10 1 9 459

example2 169 5 1 4 383
mm9b 169 24 14 23 1170
9sym 172 7 1 6 190
s820 180 5 5 3 235
s832 182 5 5 3 239

i5 185 4 1 3 367
s953 198 5 5 4 329
dk16 199 5 4 4 218
ex1 202 5 4 4 256

s1423 207 18 14 16 1430
keyb 208 5 5 4 231

i7 212 3 1 2 236
rd73 220 7 1 6 254

C2670 221 8 1 7 622
ttt2 232 6 1 5 338

s1196 244 8 1 8 498
clip 252 6 1 5 299

Table 3: Benchmark statistics after retiming to single LUT delay per cycle

Total Interconnect % of cycle
Path Delay 5 ns 2.1 ns

LUT-local-LUT 2.1 ns 42% 100%
LUT-row-local-LUT 3.6 ns 72% 170%

LUT-column-local-LUT 7.6 ns 150% 360%
LUT-row-column-local-LUT 9.1 ns 180% 430%
LUT-row-fanout-local-LUT 10.6 ns 210% 500%

Table 4: Interconnect Delays for Altera 10K100A-1

can be done without increasing interconnect requirements.
If our requisite interconnect and LUT delay both fit within the

cycle rate, then this data tells the complete story. However, if we
have interconnect delays which are greater than our cycle rate, then
the retiming requirements can be even greater than this, as we will
see below (Section 6).

The variation and absolute size of interconnect delays is one of the
challenges to using an FPGA at a high clock rate. Table 4 shows
the clocked LUT LUT delays in a modern FPGA. From this data
we immediately see:

Interconnect delay varies considerably,such that the LUT LUT
cycle time we might define may vary from 2.1 ns (fully local
assuming no other limitations on cycle rate) to 10.6 ns, a differ-
ence of 5 .
Absolute interconnect delay, for all but the most local connec-
tions, dominates logic delay.

If we are stuck traversing arbitrary interconnect at our cycle rate,
even if we retime to a single LUT between registers, we still have

a moderately large cycle (>10 ns) compared to processors in a
comparable process (See Table 1). This means that shifting register
balance alone in conventional FPGA architectures is not sufficient
to make high cycles rates achievable. Longer interconnect paths
would become unusable in order to maintain a high clock rate. If
we want to consistently achieve high clock rates, it will also be
necessary to pipelined long interconnect paths so that they will not
limit our clock cycle.

We have seen that small cycle times are possible, but hard to exploit
with current FPGA architectures. Our new architecture is designed
to overcome these problems. The basic principles are:

1. Pipeline the architecture itself:

Fix a single cycle time and define everything in terms
of that cycle time.
Add mandatory pipeline registers to break delays up
into clock cycle segments, including long interconnect
runs.

3



Inputs From Network

Chain
    In

Chain
  Out

LU
T

Cascade
In

Cascade
         out

To channel

L R

Up

Short

>

LL

R
Up

Short

Clk

L R

Up.1 Up.2

Short.1 Short.2

> >>

L
R

Up.1
Short.1

Clk

L
R
Up.2
Short.2

Figure 1: HSRA Architecture Overview

No Shortcut w/ Shortcuts Sample Route

Figure 2: Timing Domains in Interconnect

4



2. Balance resources to application needs—provide more re-
timing registers so device can be run profitably at the defined
cycle rate.

3. Integrate data retiming into CAD flow to match fixed cycle
rate and accommodate pipelined interconnect delays.

Figure 1 shows an overview of the HSRA architecture. The
computational element is a conventional 4-LUT design. The inter-
connect is a full 2-ary hierarchical array with shortcut connections
like a Fat-Pyramid [8]. What differs from a traditional FPGA de-
sign are the balance and implementation of retiming resources and
the presence of pipeline registers in the interconnect.

While we have worked out a design in detail for a hierarchical
interconnect, the key techniques exploited here should be applicable
to any pipelineable interconnect structure.

As noted above, long interconnect runs are a possible impediment
to a high clock cycle rate. In order to avoid this obstacle, we place
pipeline registers directly in the interconnect as needed. That is,
for a given target clock cycle rate, we calculate (at HSRA design
time), the length of interconnect we can travel in a clock cycle. At
the end of this length, we place a register and start over. As a result,
we break the design into timing domains as shown in Figure 2.
That is, we can go between any two LUTs or switching blocks in
a given domain within a single cycle. If two LUTs are not in the
same timing domain, it requires additional clock cycles to traverse
the intervening interconnect. For example, Figure 2 (right) shows
a route which takes 3 clock cycles to get between LUTs.

As shown in the overview (Figure 1), the timing domains are
implemented by populating a given switchbox with either pass tran-
sistor (or non-latched, rebuffered) switch point or a registered switch
point. In the pass-transistor case, the switchboxes look similar to
conventional switchpoint implementations. For small clock cycles
and long interconnect segments in the upper part of the hierarchy,
it will become necessary to place registers in the middle of long
wires, breaking them into multiple clock cycles.

The time to evaluate a single 4-LUT is actually moderately
small, easily 1 ns in the 0.35 m processes used for comparison,
and possible to implement in much less time. If we target a very
aggressive cycle comparable to LUT and flip-flop delay (e.g. Al-
tera’s 2.1 ns local delay), then the LUT evaluation, itself, makes
a nicely balanced timing domain. However, if we relax the cycle
time, we are either left with an imbalanced pipeline, or we need to
rebalance the computational portion of the cycle. Two possibilities
to consider are:

1. Place the LUT evaluation in a timing domain with a small
amount of interconnect.

2. Use a cascade of LUTs as the basic logic cycle time. For
example, a cascade chain made of hardwired inputs between
multiple LUTs is shown in Figure 3.

For our detailed architecture development, we have been focusing
on the LUT cascade.

Our Basic Logic Block (BLB) differs from conventional logic
blocks primarily in the way we handle retiming. Instead of having
a single, optional output register on the LUT, we have a bank of
flip-flops on the input which we can set to any depth between 1 and

, the architected maximum input retiming depth for a particular
device. This both gives us the richer retiming which we identified as
necessary in Section 2 and gives us the retiming we need to balance

out interconnect path delay difference introduced by the pipelined
interconnect.

Figure 4 shows an example of how the input retiming bank is
typically used. The unplaced design has 3 LUTs providing inputs to
a third. Once placed, the 3 LUTs are all a different number of clock
cycles away from the consumer. In order to get the timing correct,
it is necessary for all three signals to show up at the consumer on
the same logical cycle. Therefore, we must add additional delay
to the nearby paths so that they arrive at the same time as the far
away paths. These delays are added from the input retiming bank.
Of course, if we are fortunate, it is sometimes possible to logically
lag the evaluation time of the closer LUTs so that less padding is
necessary (See Figure 5).

Note that we have chosen to put the variable depth retiming bank
on the inputs to the logic block rather than on its outputs. By placing
the extra retiming on the inputs, we place no greater requirements
on the interconnect network than an unpipelined, unretimed design.
The data is simply routed to the target BLB as soon as possible
where it is delayed appropriately for presentation to the LUT. Had
we placed the retiming register on the output (See Figure 6), it would
have been necessary to route a separate output over the network for
each different retiming of the output needed by consumers, as was
the case in Xilinx’s Time-Multiplexed FPGA [19]. For similar
reasons, we avoided the complete decoupling of extra flip-flops
from logic blocks as explored for time-multiplexed architectures by
Bhat [2] and Chang [3].

The use of input retiming instead of output retiming does come
at a cost. Naively, we need ( number of inputs to LUT) as many
registers as the output case. From the experiment described in Sec-
tion 2, we can also calculate the input depths required. Benchmark-
wide, we need an average of 1.3 registers per input or a total of
4.4 registers per LUT. As future work, we should revisit this ques-
tion to see if the additional expense of extra flip flops was suitably
compensated by the reduced interconnect requirements.

We have implemented a prototype HSRA in a 0.4 m DRAM pro-
cess. As noted, the architecture can be targeted to a range of cycle
times by selecting where to populate the switchboxes with regis-
tered switches. Early design studies suggested we could build an
array for a cycle time as low as 2 ns, but at moderately large cost in
area (See Figure 7), power, and cross-chip latency (See Figure 8).
Consequently,we settled on a 250MHz design point for our detailed
implementation.

A primary cost of pipelining, from a latency stand-
point, is the additional clock-to-Q delay which is inserted on ev-
ery clock cycle. That is, a pipelined design of depth pays

clk Q overhead delay. In this process, our clock-to-Q delay
was just under 1 ns. Crudely speaking, at 500 MHz, this meant half
of our cycle went to clocking overhead, or our pipelining latency
cost was 100%. At 250 MHz, we are only spending a quarter of
the cycle in pipeline overhead. In addition to clock-to-Q delay, the
fixed cycle granularity along with the restriction that clock domain
boundaries occur at switchboxes also imposes a fragmentation over-
head since all delays are rounded up to the cycle time by the fixed
clocking regime.

At 250 MHz, we nominally spend 3 ns in interconnect and
compute and 1 ns in clock overhead each cycle. This increases end-
to-end or data cycle latency by 33%. For feed-forward designs, the
additional latency does not harm throughput and is generally toler-
able. For data-dependent designs, the latency can expand the time
around the critical cycle and reduce the single data stream through-
put. In data-parallel cases multiple data streams can share the com-
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Figure 8: Latency as a function of Target Clock Frequency

putation ( -slow); even running only two data streams through the
hardware can more than compensate for the 25% reduction in sin-
gle stream throughput. When no data-parallelism exists, the latency
represents a net loss in performance to the application compared to
the unpipelined case.

The addition of pipelining resources does have a cost
in area. Table 5 compares several design points from our implemen-
tation. The table shows the effects of the input retiming bank and
pipelined interconnect. Our unpipelined design without retiming
requires over 4M 2 per BLB which is extremely large compared to
conventional 4-LUT-based FPGAs; we expect that several factors
in the current network design and layout are responsible for this
discrepancy and merit serious redesign. We see that adding both
an 8-deep input retiming bank and pipelining the interconnect to
support a 4 ns cycle cost us 50% area overhead per BLB compared
to the design with no pipelining or input retiming. Note that our
registered switchpoints are 62.5K 2, or about 5 the area of our
pass transistor switchpoints at 12.5K 2. The difference in switch
area, however, does not translate directly into array area at all levels
of the tree. At the lowest tree levels switch area dominates wire
areas so the difference is seen directly. However, as we get higher
in the tree, wires dominate switches so differences in switch areas
have a less significant impact on overall device size.

In hindsight, it is clear that the particular de-
sign point we have been studying pays an excessive latency penalty.
From Figure 8, we see that crossing a 1024 logic block array can
take 52 ns, or about 5 the worst-case delay in the Altera architec-
ture (10.6 ns from Table 4). We focussed initially on a complete
2-ary tree rather than a flatter tree. As a consequence, our routes
pass through many serial switches crossing this network (21), while
the Altera design uses a flatter hierarchy where it needs to only
cross through 3 or 4 series switches. Consequently, we believe the
current absolute latency penalty is a function of the detailed net-
work architecture rather than pipelining and can be tamed if given
proper attention during design. This latency penalty, in turn, forces
us to register more often to achieve the high cycle rate and hence is
partially responsible for the overhead area required in the network
for pipelining.

With all the added pipelining resources, clock power is
a potential concern. From our proptotype layout, we burn 900pJ
in each 64 BLB subarray on each clock cycle. On average, this
means each BLB consumes 15pJ/cycle; this figure includes all of
the BLB’s input retiming registers, its output registers, and an amor-
tized portion of the clocked interconnect. For comparison, a Xilinx
XC4000XL flip-flop consumes 8-9pJ of clock cycle when in use
[12]. For large HSRA arrays, the clock energy per BLB per cycle
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X Y BLB No Registers Register 250MHz
BLB composition m m Area in 2 2/BLB 2/BLB

no input retiming 80 160 320K 4.3M 6.3M
8-deep input retiming 160 200 800K 4.6M 6.3M

Table 5: Effects of Interconnect Pipelining and Input Retiming on Area/BLB (Comparison based on 1024 BLB array)

will be higher due to the amortized contribution of additional, upper
level switching stages, but it should remain in this basic ballpark for
this technology. The Xilinx device can conserve power by discon-
necting unused flip-flops from the clock tree while our prototype
cannot.

After placing a design on the physical interconnect, we usually
discover that there are more register delays between some LUT
pairs in the mapped design than there were in the original netlist.
To obtain correct logical behavior, we must now retime the design
so that we can accommodate the presence of these delays in the
design. That is, we must find a logically correct way to move
registers around in the design, adding registers as necessary, so that
the logical net will have adequate registers between every pair of
LUTs to cover the necessary pipeline delays in interconnect. Our
retiming problem becomes: retime all LUTs such that the number
of registers between any two LUTs is greater than or equal to the
number of registers required by the interconnection network. We
can transform this problem to a traditional retiming problem as
follows (See Figure 9):
1. For every LUT LUT connection over the network, place a

linear cascade of buffers between the LUTs of length equal to
the number of registers required by the interconnection network.
Note that these added buffers are purely a logical construct used
to model the delay associated with each segment of piece of
pipelined interconnect.

2. Retime the resulting network to run at single-LUT (or buffer)
delay between registers using conventional retiming algorithms
as in Section 2.

3. Remove the extra buffers, but keep the additional registers added
to cover interconnect delays and provide data alignment. As we
saw in Figure 4, a common outcome of this retiming is that one
input to a LUT will arrive just as needed, requiring no additional
input retiming registers. Other inputs to the LUT will be forced
to await the arrival of this final LUT input. As a consequence,
these inputs will end up with more registers between the source
and sink LUT than there are interconnect pipeline delays (See
rightmost case in Figure 9).

4. Set the input retiming registers on the BLB to accommodated
any of the extra registers required to align timing on LUT inputs.

Note that this algorithm does not place an upper limit on the number
of registers which may be placed between LUTs. In practice, we
will have a finite input buffer depth, so as a post pass it is necessary to
break out retiming depths greater than the input depth and allocate
additional logic blocks to cover these long inputs. If no BLB is
available to place these extra retiming blocks, it may be necessary
to iterate placement in order to create room for the extra retiming
BLBs.

Table 6 shows the
resulting input depths after placing and retiming the benchmark set
from Section 2 and subtracting out the registers which are covered
by the network. Once again, single register depth is the single
largest component. However, on average the input depth is 4.7.

The distribution above one is much flatter with over 9% of the
register depths greater than 10.

Figure 10 shows the effects of
running a post pass to break up delays and allocate additional BLBs
to accommodate deep data retiming requirements. We see, on
average, a depth of 16 has a less than a 10% BLB overhead, with
the worst case being 100% for one benchmark. To accommodate
deep retiming, the input registers can be chained together to provide
deeper retiming of fewer signals (See top middle of Figure 1). Using
this feature a single -deep, -input logic block can act as a -
input retiming chain. Figure 10 shows the BLB overhead both
using and not using this feature. The data suggest that a modest
input depth (4–8) with chaining typically leaves us with only 20-
50% BLB overhead resulting from finite retiming buffer depth. We
used an 8 deep retiming bank for our test chip design point since it
did not result in a significantly larger design than 4 deep retiming
bank.

There are two reasons to be-
lieve these retiming results represent a pessimistic upper bound on
the the retiming requirements for a properly optimized design:
1. Our network has excessive latency which one should be able to

reduce.
2. The placement routines used did not attempt to minimize inter-

connect delays between LUTs.

We have shown that it is possible to engineer arrays which run at
cycle rates comparable to processors. We use the same techniques
common in the processor and logic design—pipelining and data
retiming. We have further shown that with these techniques we can
automatically map and run designs which use the devices profitably
at this rate for feed-forward and data-parallel applications.

Our effort to prototype this architecture achieved a 4 ns cycle rate
at a cost of roughly 1.5 area over an unpipelined design. Add to
this the 20% BLB overhead, and we pay less than 2 the area of the
unpipelined design. Since this allows us to run many pipelineable
designs at frequencies of 2–17 their unpipelined frequency, this
represents a superior area-time point for high-throughput designs.
Furthermore, the architecture supports cyclic designs in -slow
manner, extracting greater functionality from the silicon when mul-
tiple independent tasks can be interleaved. There is, nonetheless,
evidence that our current design point has excessively high area
and latency; this suggests that a properly optimized architecture
which uses these principles can achieve even greater density than
our prototype.

Obvious areas for improvement and future work include:

Quantify network costs of output retiming versus input re-
timing.

Improve network design to reduce area and latency and re-
evaluate effects on retiming requirements.
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Figure 9: Transforming network so that retiming will guarantee to cover interconnect delays

Number of Registers 1 2 3 4 5 6 7 8 9 10 10

Percentage 60 6.9 5.9 3.8 4.3 2.7 2.6 1.9 1.5 1.2 9.2

Table 6: Benchmark-Wide Distribution of Required Input Register Depth after Placement and Retiming

Develop delay- or cycle-oriented placement and assess effects
on retiming requirements.

Further, the important application questions remains:

Can most tasks with low-throughput requirements be readily
serialized to take commensurately less area with such an
architecture (e.g. use bit-serial datapaths)?

How often are cyclic constraints both unavoidable and not
amenable to profitable -slow execution (i.e. no available
data parallelism)?

If low throughput tasks cannot be serialized, the area overhead paid
for a high clock rate will go to waste. For data-dependent cycles,
the clocking latency penalty will reduce single-stream throughput.
Both of these cases would be mitigated by multiple context designs
where the higher clock rate enabled by the pipelining techniques
introduced here allows us to share interconnect and compute re-
sources in time. Ultimately, these are the questions we need to
understand in order to decide when it is best to build single-context
architecture like the HSRA and when it is more profitable to couple
these techniques with multicontext designs so that the active silicon
can be rapidly reused to perform different tasks.

This research is part of the Berkeley Reconfigurable Architectures
Software and Systems effort supported by the Defense Advanced
Research Projects Agency under contract numbers F30602-94-C-
0252 and DABT63-C-0048.
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