

Dynamic Runtime Scheduler Support for SCORE

By Michael Monkang Chu

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor John Wawrzynek

Research Advisor

(Date)

Professor John Kubiatowicz

Second Reader

(Date)

 2

Table of Contents

ABSTRACT... 5

1 INTRODUCTION.. 6
1.1 SCORE COMPUTE MODEL .. 6

1.1.1 Execution Model .. 7
1.1.2 Hardware Requirements .. 9

1.2 SCHEDULER RESPONSIBILITIES .. 10
1.3 RELATED WORK .. 11

1.3.1 Multiprocessors ... 11
1.3.2 Dataflow Systems... 11

2 METHODOLOGY & IMPLEMENTATION... 13
2.1 OVERVIEW OF SYSTEM FLOW .. 13
2.2 SCHEDULING SCENARIOS... 14

2.2.1 Small Design, Large Array .. 14
2.2.2 Large Design, Small Array .. 15
2.2.3 Bufferlocked Design... 15

2.3 SCHEDULER FLOW... 15
2.3.1 Operator Instantiation ... 15
2.3.2 Timeslice Iteration ... 16

2.4 SCHEDULER IMPLEMENTATION HIGHLIGHTS ... 22
2.4.1 “Frontier” Scheduling Heuristic ... 22
2.4.2 Pseudo-“Buddy” System Memory Management.. 23
2.4.3 Deadlock Detection & Bufferlock Detection/Resolution ... 25
2.4.4 Simulator Interface .. 26

3 RESULTS ... 27
3.1 APPLICATION OVERVIEW... 27

3.1.1 Wavelet Encoder/Decoder ... 27
3.1.2 JPEG Encoder ... 27

3.2 PERFORMANCE SCALING ... 27
3.3 SCHEDULER RUNTIME COST ANALYSIS ... 29

4 FUTURE WORK... 31
4.1 EXPANDABLE STITCH BUFFERS ... 31
4.2 QUANTIZED PRIORITY “FRONTIER” CLUSTER LIST.. 31
4.3 STATIC SCHEDULING IN SCORE ... 31
4.4 MIN-EDGE-CUT CLUSTERING... 32
4.5 PROCESS FAIRNESS GUARANTEES ... 33

5 CONCLUSION .. 34

6 APPENDIX – SCHEDULER DATA.. 35
6.1 Data Types .. 35
6.2 Data Structures ... 37

7 BIBLIOGRAPHY.. 39

 3

Table of Figures

Figure 1 - Example of Page Decomposition: (a) original operator, (b) mapped to logic

elements (LEs), (c) decomposed into fixed-size, 64-LE pages .. 7
Figure 2 - Dataflow Computation Graph with both Compute Pages and Segments.............. 8
Figure 3 - Segments and Other Data mapped onto a CMB .. 8
Figure 4 - Stream Signals ... 8
Figure 5 - Video Processing Operator... 9
Figure 6 - Fully Spatial Implementation of Video Processing Operator 9
Figure 7 - Capacity-Limited, Temporal Implementation of Video Processing Operator...... 9
Figure 8 - Hypothetical, single-chip SCORE system... 10
Figure 9 - High-level SCORE System Flow & Interaction ... 14
Figure 10 - Concurrent Operation of Processor & Array... 14
Figure 11 - Execution Flow of addOperator() .. 16
Figure 12 - Dataflow Graph with Strongly Connected Components Marked 16
Figure 13 - Execution Flow of doSchedule()... 17
Figure 14 - Example of Explicit and Implicit Done Nodes.. 18
Figure 15 - Example of trial-based scheduling. Shaded indicates speculatively scheduled

and dots indicate speculative stitch buffers. .. 21
Figure 16 - Example of Various Elements of "Frontier" Scheduling.................................... 23
Figure 17 - Example of Inter-Cluster Feedback Loop .. 24
Figure 18 - Allocation of CMB Memory Blocks in Pseudo-“Buddy” System 24
Figure 19 - Example of Dependency Cycle in Bufferlock Detection 25
Figure 20 - Wavelet Encoder Dataflow... 27
Figure 21 - JPEG Encoder Dataflow... 28
Figure 22 - Wavelet Encoder: Makespan vs. Array Size (64-LUT CPs) 28
Figure 23 - Wavelet Decoder: Makespan vs. Array Size (64-LUT CPs)................................ 28
Figure 24 - JPEG Encoder: Makespan vs. Array Size (512-LUT CPs) 29
Figure 25 - Breakdown of Per Timeslice Scheduler Cost (Wavelet Encoder Execution) 30
Figure 26 - Breakdown of Per Timeslice Scheduler Cost (Wavelet Decoder Execution)..... 30
Figure 27 - Breakdown of Per Timeslice Scheduler Cost (JPEG Encoder Execution) 30
Figure 28 - Example of Expandable Stitch Buffer Implementation....................................... 31
Figure 29 - Example of Quantized Priority "Frontier" Cluster List Implementation......... 32
Figure 30 - Example of Subsets of Nodes Marked as Static Rate Dataflow 32
Figure 31 - Example of Possible Min-edge-cut Clustering.. 33
Figure 32 - Diagram of ScoreProcess Data Type ... 35
Figure 33 - Diagram of ScoreOperatorInstance Data Type.. 35
Figure 34 - Diagram of ScoreGraphNode Data Type.. 36
Figure 35 - Diagram of ScoreStream Data Type.. 37
Figure 36 - Diagram of ScoreCluster Data Type ... 37
Figure 37 - Diagram of data structures in ScoreScheduler... 37

 4

Table of Tables

Table 1 - System Parameters for Experiments... 28

 5

Abstract
Reconfigurable computing devices offer substantial

improvements in functional density and yield versus
traditional microprocessors, yet remain out of general-
purpose use due in part to their difficulty of
programming and lack of cross-device compatibility. In
[CASPI00] a stream-based compute model called
SCORE (Stream Computations Organized for
Reconfigurable Execution) was introduced with a goal
to provide a programming model for easily exploiting
the computational density of reconfigurable devices.
SCORE virtualizes reconfigurable resources (compute,
storage, and communication) by dividing a computation
up into fixed-size “pages” and time-multiplexing the
virtual pages on available physical hardware.
Consequently, SCORE applications can scale up or
down automatically to efficiently run on a wide range
of hardware. In this project we implemented project
implements a dynamic runtime scheduler for SCORE
that virtualizes the reconfigurable computation fabric
and automatically manages the execution of SCORE
applications in hardware. Initial performance scaling
experiments show that a dynamic scheduler is able to
automatically scale applications on reduced hardware
and exploit hardware under-utilization to achieve
reasonable area-time curves. In this paper, we present
the basic scheduler details and runtime system flow
along with key implementation highlights, such as
scheduling heuristics, memory management, and
deadlock detection.

 6

1 Introduction
A reconfigurable device is a programmable

semiconductor chip containing an array of configurable
logic blocks and interconnects. These logic blocks and
interconnect can be configured to perform computations
by physically loading instruction bit-streams into the
array. By loading a different instruction bit-stream,
these devices can be reconfigured to perform a different
computation.

Reconfigurable devices have proven extremely
efficient for certain types of processing tasks. The key
to their cost/performance advantage is that conventional
processors are often limited by instruction bandwidth
and execution restrictions or by an insufficient number
or type of functional units. Reconfigurable logic can
exploit more program parallelism. By dedicating
significantly less instruction memory per active
computing element, reconfigurable devices can achieve
a 10x improvement in functional density over
microprocessors. At the same time, this lower memory
ratio allows reconfigurable devices to deploy active
capacity at a finer grained level, allowing them to
realize a higher yield of their raw capacity, sometimes
as much as 10x versus conventional processors
([DEHON96]).

While reconfigurable devices can be used in
isolation, there is also increasing interest in hybrid
architectures such as DPGA ([DEHON96]) and Garp
([HAUSER97]), coupling reconfigurable logic
(FPGAs) with a general-purpose processor (RISC).
This allows applications to specialize the reconfigurable
hardware to match application requirements while
allowing operations that run inefficiently on the
reconfigurable device to execute on the processor. In
addition, the processor is available as a platform for
managing the reconfigurable device and providing
common operating system support such as file system
access.

Another important development in reconfigurable
devices is high-density embedded DRAM such as in the
HSRA ([PERISAKISS99], [TSU99]). Devices available
in the market today provide limited amounts of fine-
grain SRAM, currently up to 96 blocks of 4 Kbits1. This
is insufficient for the data sets of many applications,
making it necessary to manage the internal memory as a
cache and store the full data set in external memory,
accessible through a low bandwidth external interface.
In addition, when a reconfigurable device needs to be
configured “on the fly”, configuration time can be
limited by the fact that configuration bitstreams reside

1 Xilinx XCV1000

in external memory. If, on the other hand, bitstreams
are preloaded into internal memory, bandwidth and
latency to the configuration is increased by orders of
magnitude, making rapid dynamic reconfiguration
possible. DRAM, with an order of magnitude higher
density than SRAM, solves both of these problems by
providing the ability to integrate large memory blocks
on-chip.

Despite the advantages in cost/performance and
developments in architecture and memory densities,
reconfigurable devices still exist mainly as application-
specific devices, out of reach of typical software
programmers. One of the reasons is the lack of
convenient programming tools and environments.
Another reason preventing reconfigurable devices from
gaining acceptance is that attaining their
performance/cost advantages often requires exposing
the underlying hardware to the programmer, making
user programs device-dependent.

SCORE [CASPI00] attempts to solve both of these
issues by providing a coherent model for expressing
both processor and array computations in a way that
can be easily mapped onto a reconfigurable array. With
the help of a runtime system providing a infinite
hardware abstraction, applications can be automatically
run on SCORE-compliant hardware of various sizes.
The runtime system contains a dynamic scheduler
responsible for accepting a user designs and executing
them on the hardware to completion.

In the following section, a brief introduction to the
SCORE compute model is presented. The remainder of
this paper is dedicated to explaining the details of the
current implementation of a dynamic SCORE scheduler
and runtime system. Initial performance scaling results
are given to show that automatic scheduling for
reconfigurable arrays is able to achieve acceptable area-
time curves when presented with reduced hardware.
Finally, the paper concludes with a discussion of future
work and a conclusion.

1.1 SCORE Compute Model2

A compute model defines the computational
semantics that a developer expects the hardware to
provide. For convenience, the SCORE compute model
is best viewed at two levels of abstraction. The
execution model defines the run-time view of a SCORE
computation. That is, it defines the run-time data
structures used to define a SCORE computation as well
as how the hardware will dynamically interpret this

2 Adapted from [CASPI00]

 7

description. The programming model provides a higher
level view of SCORE application composition and
execution suitable for the programmer. It abstracts
away some of the hardware size details visible in the
execution model, focusing the programmer on the style
of computation and program composition suitable for
SCORE execution. In this report, only the execution
model is discussed; consult [CASPI00] for details on
the programming model.

1.1.1 Execution Model

For any programmable computing architecture, we
will need a language or format for describing the
computation that the computer is to perform. The key
idea of computer architecture is that it defines the
computational description that a machine will run (i.e.
x86 ISA is a popular architectural definition for
processors). Someone building a conforming device is
then free to implement any detailed computer
organization that reads and executes this same
description of the computation (i.e. i80286, i80386,
i80486, Pentium, and K6 are all different
implementations which conform to the x86 ISA
architectural definition and all run the same
computational descriptions). Following this technique,
the execution model for SCORE defines the run-time
description of a computation for an architecture family
and the semantics expected for executing this
description.

The SCORE execution model includes the
following key components:

?? Fixed-size compute page (CP) – a block of
reconfigurable logic that is the basic unit of
virtualization and scheduling.

?? Memory segment – a contiguous block of memory
which is the basic unit for data page management.

?? Stream link – a mechanism for logically
connecting the output of one node (CP, segment,
processor, or IO) to another node.

The run-time description defines all computations
in terms of these basic building blocks. This description
is independent of the size of the reconfigurable array,
admitting architectural implementations with anywhere
from one to a large number of compute pages and
memories. The semantics provided by the architecture
is that of an unlimited number of independently
operating physical compute pages and memory
segments. Compute pages and memories operate on
stream data tagged with input presence and produce

output data to streams in a similar manner. The use of
presence tags provides an operational semantics that is
independent of the timing of any particular SCORE-
compatible computing platform.

1.1.1.1 Fixed Compute-Page Sizes

Compute pages are the basic unit of virtualization,
scheduling, reconfiguration, and relocation. In analogy
with a virtual memory page, a compute page is the
minimum unit of hardware that is mapped onto physical
hardware and managed as an atomic entity. Each
compute page represents a fixed-size piece of
reconfigurable hardware (i.e. 64 4-LUTs).

The compute page decomposition takes the stand
that it is neither feasible nor desirable to manage every
primitive computational building block (i.e. 4-LUT) as
an independent entity—just as it is generally not
desirable to manage every bit of memory as an
independent memory. Rather by grouping together a
larger block of resources, management and overhead
can be amortized over the larger number of
computational blocks. This grouping also allows hard
problems, like placement and routing within a page, to
be performed offline within the page. Note that it is
necessary that the page size be fixed across an
architecture family so that all family members can run
from the same run-time (binary) description. Otherwise,
page (re-)packing, placement, and routing would need
to be performed online. The fixed page discipline
requires that compilers partition (or pack) more abstract
computational operators into these fixed size pages (see
Figure 1).

Figure 1 - Example of Page Decomposition: (a) original
operator, (b) mapped to logic elements (LEs), (c)
decomposed into fixed-size, 64-LE pages

 8

Compute pages may contain internal state. Since
the semantics provided by the hardware is that of an
unbounded number of compute pages, the state
associated with a CP must be saved and restored when a
CP is swapped off of and on to a physical compute
page.

1.1.1.2 Memory Segments and Configurable
Memory Blocks

A memory segment is a contiguous block of
memory that is managed as a single, atomic memory
block for the purposes of swapping and relocation.
Memory segments can be used in several modes (i.e.
FIFO, read-only, random read-write). When configured
into a particular operating mode, a segment will have its
own stream ports (i.e. address input, data input, data
output, control input) which connect it into the
computational graph of pages and segments (see Figure
2).

To use a memory segment, the run-time system
will map it into a configurable memory block (CMB)
(see Figure 3). The CMB is a physical memory block
inside the reconfigurable array with active stream links
and interconnect to connect the memory segment into
the live computation. In addition to holding user-
specified segments, CMBs are also used to hold
segments containing CP configurations, segments
containing CP state, and segments associated with
stream buffers (see Figure 3). A single CMB may hold
any number of each of these types of segments as long
as their aggregate memory requirement does not exceed
the CMB’s capacity. In our current vision, only a single
such segment may actually be live at any point in time,
but there is nothing in the SCORE definition that
prevents an implementation from being designed to
handle multiple, live segments in the same CMB.

Figure 2 - Dataflow Computation Graph with both
Compute Pages and Segments

Figure 3 - Segments and Other Data mapped onto a CMB

1.1.1.3 Physically Finite, Logically Unbounded
Streams

Streams form the data flow links between pages. A
node (CP or segment) indicates when it is producing a
valid data output with an out-of-band data present bit.
The data value (token) is transported to the destination
input of the consuming operator. The stream delivers all
data items generated by the producer, in order, to the
consumer, storing each until the consumer indicates it
has consumed it from the head of its input queue (see
Figure 4).

When a stream is empty, the downstream operator
will stall waiting for more input data. This discipline
hides the detailed timing of operations from the
programming model, guaranteeing correct behavior
while allowing variations between implementations of
the computing architecture.

Figure 4 - Stream Signals

 9

Even at the run-time level, these streams provide
the abstraction of unbounded capacity links between
producers and consumers. In practice, however, the
streams are finite with an implementation-dependent
buffer capacity. To implement the semantics of
unbounded, FIFO stream links, an implementation will
use backpressure (see Figure 4) to stall production of
data items and the run-time system will allocate
additional buffer space in the form of FIFO segments as
needed.

Physically, a stream may be realized in two ways:

?? When both the producer and the consumer of a
vstream are instantiated on the physical hardware,
the stream link can be implemented as a spatial
connection through the inter-page routing network
between the two pages. (See Figure 6)

?? When one of the ends of the stream is not resident,
the stream data can be sinked (or sourced) from a
stream buffer segment active in some CMB on the
component. (See Figure 7)

This allows efficient, pipelined chaining of co-
resident operators when space permits, as well as deep
intermediate data buffering when it is necessary to
sequentialize computation.

1.1.1.4 Hardware Virtualization

Compute pages, segments, and streams are the
fundamental units for allocation, virtualization, and
management of the hardware resources. At run-time, an
operating system manager must handle the scheduling
of virtual pages and streams onto the available physical
resources, including page assignment and migration and
inter-page routing.

If there are enough physical resources, every page
of a computation graph may be simultaneously loaded
on the reconfigurable hardware, enabling maximum-
speed, fully-spatial computation. Figure 6 shows this
case for the video processing operator of Figure 5.

If hardware resources are limited, a computation
graph will be time-multiplexed onto the hardware.
Streams between virtual pages which are not
simultaneously loaded will be transparently buffered
through CMBs. Figure 7 shows this case for the video
processing operator. Each component operator is loaded
into hardware in sequence, taking its input from one
CMB and producing its output to another.
Configuration information and user data for swapped
out pages are also stored in CMBs when the page is not
resident.

Figure 5 - Video Processing Operator

Figure 6 - Fully Spatial Implementation of Video
Processing Operator

Figure 7 - Capacity-Limited, Temporal Implementation of
Video Processing Operator

1.1.2 Hardware Requirements
SCORE assumes a combination of a sequential

processor and a reconfigurable device. Although more
stylized than simply placing an FPGA on an expansion
bus, the requirements for a SCORE implementation are
fairly modest. The reconfigurable array must be divided
into a number of equivalent and independent compute
pages. Multiple, distributed memory blocks are required
to store intermediate data, page state, and page
configurations.

The interconnect between pages must:

?? Provide adequate bandwidth to memory, allowing
different memory pages to be used concurrently,

 10

?? Support high bandwidth, low latency
communication between active compute pages,

?? Provide buffering for pipelining data, and a back-
pressure signal to stall upstream computation
when the network buffer capacity is exceeded,

?? Provide sufficiently rich interconnect to facilitate
rapid, online routing.

The compute pages themselves can be designed
using any reconfigurable fabric as long as there is
support for rapid reconfiguration. This support should
include the ability to save as well as restore array state
quickly. Although configuration caches may be
beneficial (i.e. [TAU95], [HAUSER97]), we anticipate
a wide range of applications where microsecond
reconfiguration times are adequate for good
performance. The subarray design from the HSRA
[TSU99] is a feasible concrete implementation for a
compute page. It provides microsecond reconfiguration
and high-speed, pipelined computation. The symmetry
of these compute blocks allows a single virtual compute
page configuration to run on any physical compute page
in the array.

Each configurable memory block (CMB) is a self-
contained unit with its own address interface, data path,
and address generator. Hence CMBs may be accessed
independently and concurrently in a scalable system.
The CMB can be an external RAM component or an
on-chip memory bank (i.e. BRASS Embedded DRAM
[PERISSAKIS99]) with logic to tie it into the data flow
synchronization used by the interconnect network. The
memory controllers need to support a simple paged
segment model, allow the scheduler to relocate memory
blocks within a physical memory page, and provide
protection via segment bound registers. Since streaming
access is commonly used during reconfiguration, state
swapping, and stream buffer operations, dedicated
stream access modes are useful to minimize external
address bandwidth requirements.

A SCORE-ready reconfigurable array must also
support several out-of-band signals. These signals are
used by the dynamic runtime scheduler to query the
status of the executing CPs and CMBs. The scheduler
uses the runtime status to evaluate the effectiveness of a
particular design mapping. A simple scheduler requires
the following basic signals:

?? Each CP and CMB must have a concept of done to
indicate it is done processing data.

?? Each CP and cMB needs to keep track of how
often it is stalled on input underflows and output
overflows.

?? Each CP and CMB must be able to report which
I/O streams cause the current stall.

The sequential processor plays an important part in
the SCORE system. It runs the page scheduler needed
to virtualize computation on the array, and it executes
SCORE operators which would not run efficiently in
reconfigurable implementation. Both of these functions
require that the processor be able to control and
communicate with the array efficiently. A single-chip
SCORE system (i.e. see Figure 8) integrating a
processor, reconfigurable fabric, and memory blocks
could provide tight, efficient coupling of components.

Figure 8 - Hypothetical, single-chip SCORE system

Although a single-chip SCORE implementation
offers benefits for performance and design efficiency,
the SCORE model permits a wide range of
implementations including one using conventional,
commercial components.

1.2 Scheduler Responsibilities
The SCORE scheduler is one of the key

components in the runtime system. It is responsible for
three main tasks:

?? It accepts operators partitioned into fixed-size
pages and segments from the user program and
schedule the design to completion;

?? It manages all of the hardware resources on the
array, including the CPs, CMBs and routing
resources;

?? It provides the functional abstraction of infinite
hardware to the application.

 11

In addition to these responsibilities, the scheduler
must also guarantee that deadlock and bufferlock are
not introduced into the design. Also, livelock, or
starvation, should be avoided by the scheduling
heuristic. In Section 2, we show how the current
SCORE implementation fulfills these responsibilities.

1.3 Related Work

1.3.1 Multiprocessors

SCORE shares with the multiprocessor community
the notions of priority-list scheduling [GAJSKI92] and
gang scheduling [FRANKE96]. Given a task
precedence graph, priority-list scheduling uses a
priority function to choose from among all tasks whose
predecessors have completed, which to schedule. In the
SCORE model, priorities can be used in conjunction
with a dataflow graph to choose among operators
whose predecessors have fired. Priorities may include,
for instance the number of input tokens queued, and
whether an operator configuration is already loaded on
the array. [LIAO94] found that no single priority
heuristic was optimal across different program
structures and multiprocessor configurations, but that
adaptive combinations thereof produced good results.
Gang scheduling involves co-scheduling related tasks.
In the SCORE model, it is clearly advantageous to co-
schedule neighboring operators from the dataflow
graph. In addition, it is highly advantageous to co-
schedule all operators belonging to a feedback loop to
avoid context swaps in each traversal of the loop.

There are some hardware similarities between a
SCORE-based reconfigurable array and traditional
message-passing multiprocessors. The array consists of
nodes containing a processor with memory,
communicating via point-to-point paths on a fat-tree
network. Each node, however, is much smaller than a
microprocessor. A CP containing 64 dual-4-LUT
blocks, for instance, is comparable in complexity to an
ALU. Such small nodes necessitate centralized control
(on an external processor) for context swapping and job
scheduling. In addition, the array has operating costs
different from multiprocessors. The streaming
capabilities of the network make inter-page
communication relatively cheap since pipelining can
hide network latency. Context swaps, which cost
hundreds to thousands of cycles, thus lead to very high
amounts of lost computation. The disparity in cost
between communication and context swaps is thus far
more extreme than in multiprocessors, where tasks are
longer lived, and communication (which may require
kernel intervention) has cost more comparable to
context swaps.

1.3.2 Dataflow Systems
Because fully dynamic, run-time scheduling can be

prohibitively expensive, various efforts appear in
multiprocessing literature to exploit compile-time
scheduling [KONSTANTINIDES90], [YEN95]. Such
efforts typically assume a fixed or highly predictable
communication structure among known computational
elements. Such restrictions are well modeled by
dataflow computational models, in which a
computation is described by the flow of tokens along a
graph of computational operators, without explicit
control structure. The SCORE model is essentially a
dataflow on CP-sized macro-operators, each of which
clusters traditional dataflow operators (specifically,
integer-controlled dataflow operators in our restricted
SCORE model).

Synchronous Dataflow (SDF) is a dataflow
computational model in which the number of tokens
consumed and produced in each firing of an operator is
known at compile time. SDR is thus amenable to static
scheduling with minimal runtime overhead. Although
SDF is not Turing-complete due to lack of conditional
control, it is sufficient for many digital signal
processing tasks (i.e. FIR/IIR filtering). A theoretical
framework exists for statically scheduling SDF graphs
on uniprocessors [BHATTACHARYYA96], which can
find (or disprove the existence of) periodic firing
schedules with guaranteed memory requirements and
deadlock-free operation. Boolean-controlled Dataflow
(BDF or Token Flow, [BUCKLEE92], [BUCKLEE93],
[BUCK93]) and Integer-controlled Dataflow (IDF,
[BUCK94]) are Turing-complete extensions of SDR
that add simple conditional operators. Scheduling of
BD and IDF graphs on uniprocessors typically requires
clustering subgraphs to run in successive phases, so as
to bound memory requirements.

Scheduling dataflow graphs on parallel hardware
has additional synchronization complications due to: (i)
heterogeneous operator firing times, (ii) network
delays, and (iii) clustering of operators on processors.
[WILLIAMSON96] implements a mapping of SDF to
VHDL for hardware generation, where the creation of
arbitrary control and synchronization signals obviates
the need for operator clustering. With regards to
clustering on conventional multiprocessors, there has
been some work in compile-time scheduling based on
run-time profiles [HA97] as well as static graph
analysis [BHATTACHARYYA95] [PINO95]. Fully
dynamic scheduling, due to its high cost, is typically
not the best solution in computational domains which
have static guarantees, such as SDF. [LEE91] defines a
taxonomy and discusses tradeoffs in the spectrum
between fully-static and fully-dynamic dataflow
scheduling.

 12

[JONSSON96] describes a heuristic, on-line, SDF
scheduling algorithm for idealized message-passing
multiprocessors similar in some respects to the
SCORE-based reconfigurable processor. The algorithm
exploits pipelining by scheduling “linear clusters” of
dataflow operators. Each node in such a cluster has
exactly one dataflow successor in the cluster, so the
nodes form a pipeline for tokens. The study reports 80-
90% utilization in the used processors for several feed-
forward applications and 10% utilization for a
feedback-constrained application. The study does not
discuss memory constraints for data streams entering or
leaving clusters, so it is possible that the utilization
reported is high due to large or infinite memory
assumptions.

 13

2 Methodology &
Implementation

2.1 Overview of System Flow
Figure 9 shows the overall system flow of the

current SCORE implementation, from operator
instantiation to actual execution of the operator on the
simulator. This figure represents the simplest situation:
one single-threaded user application instantiating a
single-operator design. The current system simulates
the reconfigurable array fabric.

The basic structure of a SCORE application is
shown in Figure 9. At the start of the program,
score_init() is called to initialize any SCORE-related
variables as well as establish an interface with the
runtime system. Any streams needed for passing data to
or receiving data from the operator are instantiated so
they can be passed to the runtime during operator
instantiation. Then, the operators making up the design
are instantiated. An IPC3 message is sent to the SCORE
runtime, where it is received by the IPC thread. The
application then performs any necessary computations
and feeds data tokens to the operators for processing
(via stream writes) and receives result tokens (via
stream reads). It is expected that the bulk of the time
will be spent in this step. Finally, once the application
has completed its task, final cleanup is performed by
calling score_exit().

The instantiated SCORE operators are abstract
representations of algorithmic data transformations.
Operators do not necessarily correspond to compute
pages. It is the responsibility of the page partitioner to
either decompose large operators or merge small
operators into fixed size pages. However, because the
current SCORE implementation lacks an automatic
page partitioner, the page partitioning is performed by
hand. For simplicity of hand partitioning, we have
assumed that each operator is a self-contained
composition of compute pages. The current scheduler
data structures reflect this simplification (see Section
6.1.2). Future implementations will reflect the true
nature of operators once a partitioner exists.

The SCORE runtime is implemented as a user-
level application consisting of 3 threads (see Figure 9):
IPC, scheduler, and simulator. The role of each thread
is:

?? IPC: to receive operator instantiation requests
from the IPC message queues, retrieve operator

3 Inter-Process Communication

instances from persistent storage, instantiate the
operator, and perform any necessary
preprocessing before handing off the operators to
the scheduler thread.

?? Scheduler: to accept preprocessed operators from
the IPC thread, decide which parts of operators
should be scheduled onto the hardware, and issue
reconfiguration commands to configure CPs and
CMBs.

?? Simulator: to simulate the functionality of the
reconfigurable array, accept reconfiguration
commands from the scheduler thread and simulate
the behavior of the scheduled pages and segments.

When an operator is instantiated from the SCORE
application an IPC message is sent to the runtime
containing a fully-resolved filename for the location of
operator data along with instantiation parameters, such
as operator bit width. The IPC thread receives the
instantiation message and retrieves the file containing
the operator data from the filesystem. The operator is
instantiated with the provided instantiation parameters.
The thread initializes data structures as well as performs
clustering and optimizations before entering the
operator into the shared scheduler data structures. If the
scheduler thread is currently idle, a “reawaken” signal
is sent to begin scheduling.

The scheduler is invoked at fixed timeslice
intervals. Once invoked, the scheduler examines the
state of the array as well as its waiting lists to determine
which pages and segments to schedule next on the
array. Then the scheduler issues reconfiguration
commands in the form of hardware API calls. The
simulator provides a cycle-by-cycle simulation of the
scheduled pages and segments. The hardware API
serves as an abstraction layer so that when the simulator
is replaced with real hardware, the scheduler will not
need to be altered.

Scheduler and array execution occur concurrently.
At the beginning of the timeslice, the scheduler reads
status from the array and then allows the array to
continue executing. When the scheduler is ready to
issue reconfiguration commands it stops activity on the
array (see Figure 10). The advantage of this technique
is that the array does not sit idle while the scheduler
makes its decision. However, the consequence is that
the scheduler may be working on stale array status.
Minimizing scheduler decision time can reduce the
staleness of the status.

Figure 9 - High-level SCORE System Flow & Interaction

2.2 Scheduling Scenarios
Before delving into the details of the scheduler

flow and algorithm, it is beneficial to recognize
common scheduling scenarios and the role of the
scheduler in each situation. There are three key
scenarios that illustrate the types of scheduling
decisions that need to be made by the SCORE
scheduler. In general, most SCORE execution can be
classified as one of the following models: a small
design that fits completely within a large array, a large
design that does not completely fit within a small array,
and a design that is bufferlocked (see Section 2.4.3) as a
result of finite physical resources. This section explains
the each of the basic scenarios as well as the role of the
scheduler in each scenario.

2.2.1 Small Design, Large Array
The simplest scenario to imagine is when the user

instantiates a design fitting completely within the
physical array (for an example, see Figure 6). In this
case, the scheduler performs three major tasks:

?? Determine physical placement of the pages and
segments on the array (Section 2.3.2.8),

?? initiate array configuration (Section 2.3.2.9), and

?? wait for pages and segments completion before
removing them from the array (Section 2.3.2.3).

Figure 10 - Concurrent Operation of Processor & Array

 15

The reconfigurable array is not time multiplexed and
the scheduler makes no meaningful scheduling
decisions.

2.2.2 Large Design, Small Array
As programmers develop more complex

applications in SCORE, the more common scenario will
consist of a design so large that it no longer fits in a
single array (for an example, see Figure 7). In this case,
the scheduler must time multiplex the limited physical
array among the pages and segments of the logical
design. Changes in the schedule can be made at fixed
timeslices or more frequently when the status of the
array changes, such as when a page stalls on lack of
input.

In the current implementation, the scheduler uses
fixed timeslices (see Section 2.3.2). At each timeslice,
the effectiveness of the current design mapping is
determined by sampling the array status. If the current
mapping is determined ineffective (perhaps due to
insufficient input data), the scheduler decides on the
next set of pages and segments to map. Then, these
nodes are placed, loaded, and run in a manner similar to
Section 2.2.1.

The goal of the scheduler in this case is to rapidly
determine the best set of pages and segments to
schedule at each timeslice. This task can be improved
by preprocessing the user design. Pages and segments
working closely with one another, such as feedback
loops, can be marked together in a cluster (see Section
2.3.1.1). By performing this preprocessing once at the
beginning, effective scheduling decisions can be made
more quickly at each timeslice.

2.2.3 Bufferlocked Design
Finally, sometimes logically correct designs may

exhibit deadlock when mapped onto physical hardware.
The cause of this deadlock is the limited size of the
physical stream buffers versus the abstraction of infinite
stream depth in the SCORE model. This can occur with
designs that fit completely within the physical array as
well as designs which must be multiplexed. When this
occurs, the design is said to be bufferlocked.

Since it is the responsibility of the scheduler to
provide the abstraction of infinite hardware, the
scheduler must detect and resolve this condition when it
occurs. The simplest way to do this is to search for
bufferlock on every timeslice. A more efficient method
is to wait for the design to deadlock and then run the
bufferlock detection routine. Once bufferlock is found,
the bufferlock cycle is broken by artificially increasing
the stream buffer depth by inserting CMBs to serve as

FIFOs. Section 2.4.3 goes into more depth on the exact
method used by the current scheduler implementation.

2.3 Scheduler Flow
This section explains the actual execution flow of

the implemented scheduler. There are two types of flow
in the SCORE scheduler: operator instantiation flow
and timeslice iteration flow. Operator instantiation flow
includes the sequence of steps performed by the
scheduler every time an operator is instantiated. For
most applications, this flow is experienced only once at
the beginning of the run. Timeslice iteration flow
describes the sequence of steps performed by the
scheduler at every timeslice and is incurred multiple
times in a run, depending on the application.

2.3.1 Operator Instantiation
Operator instantiation in the runtime system is

handled by the IPC thread. Figure 9, shows the
sequence of actions once an operator is instantiated by
the user application. An IPC message containing the
fully-resolved filename for the operator data is sent to
the IPC thread within the runtime. The operator data is
retrieved from the filesystem and the operator is
instantiated with the given parameters. The result of
instantiation is passed to the addOperator() method
responsible for performing checks on the operator and
preparing it to be scheduled.

2.3.1.1 Adding a new operator

Figure 11 shows the execution flow of
addOperator(). Once addOperator() receives the
instantiation of an operator, it is responsible for
initializing the operator variables and preparing the
pages and segments in the operator to be scheduled by
the scheduler thread.

Acquiring and releasing the lock on scheduler data
structures prevents corruption of scheduler data
structures from simultaneous changes by the IPC and
scheduler threads. The major operations performed
include running the SCC4 graph algorithm
[CORMEN96] for cluster formation, checking physical
constraints on the clusters, initialization and
bookkeeping, and insertion of the clusters into the
scheduler’s waiting list.

The SCC graph algorithm takes a given directed
dataflow graph and decomposes it into its strongly
connected components. Strongly connected components
of a graph consist of nodes which “are mutually
reachable”. “Mutually reachable” means that starting
from any node in a strongly connected component we

4 SCC: Strongly-Connected-Components

 16

are able to reach any other node in the component by
traversing edges. Figure 12 shows an example of a
dataflow that has its strongly connected components
marked. This property corresponds to feedback loops
among pages and segments in an operator. We attempt
to identify feedback loops in the dataflow because the
nodes within a feedback loop must be handled in a
special manner. If nodes in a feedback loop are allowed
to be non-coresident, then the array will experience
configuration thrashing. On each timeslice, the resident
portion of the feedback loop will be able to process
only a few tokens before it is starved for data provided
by the non-resident portion. To prevent this situation
from happening, once the system identifies the nodes of
a feedback loop, those nodes are placed in a cluster
which guarantees they will be scheduled on the array
atomically.

Once the operator is partitioned into clusters,
addOperator() checks each cluster’s physical resources
requirement. One of the requirements of a cluster is that
is should be able to be scheduled on the array by itself
to prevent schedule starvation (see Section 6.1). To
guarantee this requirement, addOperator() examines
each newly formed cluster and counts the number of
pages that exist in the cluster. This number must be less
than or equal to the number of physical CPs in the
array. Next, it counts the number of segments plus the
number of cluster IO streams. This number must be less
than or equal to the number of physical CMBs in the
array. The reason for counting the number of cluster IO
streams is to determine the number of stitch buffers that
could potentially be required. A cluster that does not
meet these requirements is then decomposed into a
smaller cluster with, hopefully, fewer requirements. In
the current implementation, invalid clusters are
decomposed into single-node clusters (i.e. only one
page or segment in each cluster). Any remaining
clusters that still do not pass the test will cause the
entire operator to be rejected from the runtime system.

If all clusters pass the check, addOperator()
initializes the variables for the operator, pages,
segments, and clusters. Then, some bookkeeping
operations are done to synchronize the state of the
system with the addition of the operator. These
bookkeeping operations include: adding the operator to
the parent process object, maintaining the processor-
array IO stream list, and adjusting the “frontier”
scheduling head cluster list (see Section 2.4.1 for more
explanation on the head cluster list).

Finally, just before addOperator() finishes, the
newly formed clusters are added to the scheduler’s
waiting cluster list. There they await scheduling during
the next timeslice.

Figure 11 - Execution Flow of addOperator()

Figure 12 - Dataflow Graph with Strongly Connected
Components Marked5

2.3.2 Timeslice Iteration
Scheduling decisions are made at timeslice

intervals. At predetermined times defined by the
timeslice interval, the scheduler thread is woken up,
examines the current state of the reconfigurable array
and decides which portion of the dataflow to schedule
on to the array and which to swap out. doSchedule() is
the method called at each timeslice and it in turn calls
several other methods to perform status gathering and
scheduling (see Figure 13).

5 Adapted from Figure 23.9 on page 489 in
[CORMEN96].

 17

The entire process consists of several stages. At the
beginning of the timeslice, the status of the array is
read. The array is allowed to continue executing while
the scheduler makes its decision to hide the overhead of
scheduling. Using the “frontier” scheduling heuristic
(see Section 2.4.1), clusters are marked to be removed
or scheduled. Placement is performed to determine
where the scheduled pages and segments will reside on
the array. Finally, array execution is halted and
reconfiguration commands issued to dump and load the
appropriate pages and segments. The array is restarted
and final cleanup is performed. Like addOperator(),
doSchedule() acquires and releases the lock on
scheduler data structures to prevent the corruption of
the data structures from simultaneous changes by the
IPC and scheduler threads.

Figure 13 - Execution Flow of doSchedule()

2.3.2.1 Retrieving physical array status

After doSchedule() acquires the scheduler data
lock, the scheduler reads the status from the physical
array. The status includes:

?? Which pages and segments are stalled on input or
output streams along with the number of cycles
each node has been stalled and which streams are
causing the stalls.

?? Which pages and segments have finished
executing and signaled done.

?? The stream consumption and production rates for
each input and output stream.

?? For each page, the state its state machine has
reached.

?? For segments, the memory address causing the
address fault if the segment has experienced a
fault.

?? The number of tokens left unprocessed in the
stream inputs FIFOs.

The getCurrentStatus() method reads the array
status through the hardware API getArrayStatus() call
(see Section 2.4.4). The array is allowed to continue
executing while the scheduler interprets these results.
The raw status is passed to the gatherStatusInfo() stage
for processing.

2.3.2.2 Convert and process array status

The purpose of the gatherStatusInfo() scheduler
stage is to convert the raw status information from the
hardware into usable information for the scheduler.
Raw status is returned in a compact array with each
element in the array corresponding to a physical CP or
CMB. The lack of correlation between the dataflow
representation and the physical status array makes it
more difficult to utilize the information during
scheduling.

It is the responsibility of gatherStatusInfo() to
traverse the physical status array, look up the mapping
to the virtual page or segment in the dataflow graph and
transfer the status to the graph node.

2.3.2.3 Detect done pages and segments

As pages and segments complete their execution, a
built-in mechanism allows these nodes to signal to the
runtime system that they can be removed. This

 18

mechanism is the done signal which is an out-of-band
(i.e. independent of the stream communication) signal
to the processor. This signal is part of the status
returned by the hardware to the scheduler.

The scheduler subdivides done nodes into two
types: explicit done nodes and implicit done nodes.
Once the scheduler receives a done signal from a page
or segment, that node is marked as a done node and
scheduled for removal from the array. When a node is
marked in this manner, it is referred to as an explicit
done node.

However, signaling done is not the only way for a
node to be marked done. A node can also be marked
done if it no longer has a reason to exist in the dataflow
graph. For a page, this means that all consumers of its
outputs have signaled done. Therefore this page can no
longer affect the final result of the operator. For a
segment, not only must all of the consumers of its
output be done, it must also guarantee that it can no
longer affect the data block associated with the
segment. This is simple if the segment is read-only.
However if a segment is write-only or read-write, its
input nodes must also be done.

A graph search is performed, starting from the
explicit done nodes, to find the implicit done nodes. As
implicit done nodes are discovered, they are added to
the search list. A node marked done because it is
logically useless in the dataflow graph is referred to as
an implicit done node.

Figure 14 shows an example of how nodes would
be marked explicit and implicit by the scheduler. All
nodes in the figure are pages. Assuming node C
signaled done, node C would be marked as an explicit
done node. Since it is the only consumer of output
tokens from node B, node B is logically useless and
marked as an implicit done node. In turn, node A
becomes logically useless and is also marked as an
implicit done node. Node D is not marked as an implicit
done node because its output tokens are also consumed
by node E which is not done. Finally, node F does not
have its output stream tokens consumed by node C and
is therefore unaffected by node C signaling done.

All done nodes (explicit or implicit) are placed on a
done node list which is passed on to later scheduler
stages. The nodes are removed from their parent
clusters, operators, and processes. If it is currently
scheduled, its position on the array is cleared to make
room for non-done nodes. Its associated data structures
(i.e. C++ object representation in scheduler memory)
are cleaned up during the performCleanup() stage (see
Section 2.3.2.10).

Figure 14 - Example of Explicit and Implicit Done Nodes

2.3.2.4 Detect address-faulted memory segments

The SCORE compute model permits user-
instantiated segments to be arbitrarily large. Physically,
the scheduler realizes this abstraction by loading a
fixed-size block of data into a CMB and appropriately
setting the base and bound registers within the CMB to
accomplish address translation (similar to paged virtual
memory systems). The base and bound registers also
serve to notify the scheduler of memory accesses made
outside of the currently loaded block. In this case, an
address fault signal is sent to the processor and the
address causing the fault is recorded.

In findFaultedMemSeg(), the scheduler examines
the physical array status to determine which segments
have experienced address faults. It must determine if:
(i) this is a genuine address fault caused by memory
virtualization, or (ii) this is a segmentation fault caused
by the operator trying to access memory outside of the
range defined for that segment. If it is a genuine address
fault, the scheduler determines the next block of data to
load. If it is a segmentation fault, the operator is
terminated with an error.

In the future, it is likely that this functionality will
be moved to a separate memory management thread.
This would enable address faults to be serviced without
the overhead and latency of a full scheduler iteration. In
this case, it would be beneficial to have a separate path
available to transfer memory between CMBs and main
memory to avoid interrupting running nodes on the
array when performing memory management.

2.3.2.5 Determine and mark freeable clusters

When pages and segments become stalled, the
scheduler must decide which nodes to remove from the
array to make room for waiting pages and segments.
This task is performed by the findFreeableClusters()
stage. In this stage, the scheduler examines the list of
currently scheduled clusters to determine which clusters
should be removed from the array. The decision is

 19

based on how many nodes in each cluster are stalled
and cannot make forward progress. There are two
issues to consider when making this decision:

?? How does the scheduler determine that a node can
no longer make forward progress?

?? How does the scheduler determine when to
remove a cluster if some of the cluster nodes are
still able to make forward progress?

Simply looking at which nodes are currently stalled
is insufficient. In the course of execution, most nodes
will be stalled on inputs or outputs some time due to the
latency inherent in passing tokens through the network.
Instead, the scheduler applies a heuristic based on the
number of cycles a node has been stalled. The notion of
stall threshold is defined as the maximum number of
cycles a node can be stalled in a timeslice before it is no
longer considered able to make reasonable forward
progress. Currently, the stall threshold is set to be one-
half of the timeslice width in cycles. Nodes considered
unable to make reasonable forward progress are marked
freeable nodes.

Once the freeable nodes have been identified, the
scheduler needs to decide which clusters should be
removed. This is done by traversing the resident cluster
list and examining the status of the cluster nodes. If all
of the nodes of a cluster are marked freeable, the parent
cluster is marked freeable.

However, the decision is more difficult if only
some of the nodes are marked freeable. The reason is
because the semantics of clusters requires that all of its
nodes either be atomically scheduled or removed from
the array. This would mean potentially preempting a
node which can still make reasonable forward progress.
This issue is resolved with another heuristic. The notion
of a cluster freeable ratio is defined as the ratio of nodes
in a cluster that must be marked freeable before the
cluster itself is marked freeable. Currently, the cluster
freeable ratio is set to 0.5, meaning that one-half of the
nodes in a cluster must be marked freeable before the
cluster is marked freeable. All clusters marked freeable
are placed on a freeeable cluster list which is passed on
to later scheduler stages6.

6 It should be noted that the classification of freeable
clusters is only a recommendation. There is no
guarantee that a freeable cluster will be removed during
this timeslice or clusters not marked as freeable will not
be removed.

2.3.2.6 Detect and resolve runtime deadlock

During the course of execution, it is possible for a
user’s design to experience deadlock. Deadlock may
result from an inherent flaw in the dataflow or
introduced by the scheduler due to physical stream
constraints. To determine the cause of the deadlock,
deadlock detection must be performed on the design.
The method of deadlock detection and resolution is
described in Section 2.4.3.

Deadlock detection potentially could be performed
on every timeslice to immediately detect deadlocked
designs. However, the heuristic used to perform
detection is expensive. In most timeslices, there will be
no deadlock to detect and the detection overhead will
be wasted. Therefore, the scheduler attempts to wait
until a design is actually deadlocked before deadlock
detection is performed.

The method used by the scheduler is simple. On
every timeslice, the scheduler looks at the status for
each resident page and segment to determine if it has
consumed any inputs or produced any outputs. If a node
has done neither, it will be marked as non-firing and the
count of non-firing nodes for that user process is
incremented. Likewise, if a node does consume inputs
or produce outputs during a timeslice and it was
previously marked non-firing, the mark is reset and the
process count of non-firing nodes is decremented. Once
a process’s non-firing node count equals the number
nodes in the process, it is subjected to deadlock
detection.

It is still possible for deadlock detection to be
prematurely run on a process. In this case, all of the
nodes are reset to firing status and the non-firing node
count is reset. This situation could occur for various
reasons, including: the application for this design has
not injected tokens or the non-firing status marks are
stale or inaccurate (a node may be firing without
consuming inputs or producing outputs).

2.3.2.7 Dynamically schedule clusters

The scheduleClusters() stage is the heart of the
SCORE scheduler. It is responsible for determining
which clusters are actually scheduled and removed
during the current timeslice. To perform this task, it
utilizes the done node list and freeable cluster list to
understand the current state of the array. It then
proceeds using trial-based scheduling to determine
which clusters should be removed and scheduled.

The trial-based scheduling method works in the
following manner: for each scheduling trial, the
scheduler performs a scheduling action, such as adding

 20

or removing a cluster. After each scheduling action, the
scheduler calculates the number of physical CPs and
CMBs that would be free (unoccupied) if no more
scheduling actions are performed.

The number of free physical CPs is required to
remain non-negative. The scheduling trials are halted if
the speculated number of free physical CPs goes to zero
or a negative number. However, the speculated number
of free physical CMBs is allowed to drop below zero.
The trials are ended when either the speculated number
of free CPs reaches zero (or would have become
negative) or no more clusters remain waiting to be
scheduled. At this point, the scheduler backs up to the
last trial where the number of free CPs and free CMBs
are both non-negative. The scheduler must maintain
enough intermediate information to perform the trial
rollback.

Figure 15 shows an example of trial-based
scheduling. Initially, there are no clusters resident on
the 4-CP/4-CMB array. Each circle represents a single-
page cluster. Therefore, at the beginning of the trials,
free CPs equals 4 and free CMBs equals 4.

The scheduler selects cluster A for scheduling.
Immediately, we notice that the number of free CMBs
drops to 0. The reason is because of the speculative
addition of stitch buffers. Stitch buffers are segments
added to serve as a token source or token sink when
only one end of a stream is resident on the array. Stitch
buffers are realized using FIFO segments. If it is only
sourcing tokens, it is placed in read-only mode. If it is
only sinking tokens, it is placed in write-only mode. If
both the source and sink of the stream become resident
but tokens still remain in the stitch buffer, it is placed in
read-write mode.

In successive trials the number of free CPs
continues to decrease by 1 while the number of free
CMBs fluctuates with the choice of clusters scheduled.
The trials are halted when all of the free CPs have been
exhausted. At this point, because the number of free
CMBs is non-negative, no roll back of trials is needed.

In the current implementation of the scheduler,
scheduling trials progress in the following order:

?? Done nodes are removed from the array.

?? If there are clusters on the waiting list, clusters on
the freeable cluster list are speculatively removed.

?? Clusters are repeatedly added to the array
speculatively using the “frontier” scheduling

heuristic (see Section 2.4.1) until no more free
CPs remain7 or no more clusters remain
unscheduled.

Once the scheduling trials have been completed
and the last valid trial has been selected, the scheduler
updates the internal cluster lists (i.e. waiting cluster list,
resident cluster list) and appropriately marks each
cluster, page, and segment with its residency status.
Stitch buffers are inserted into the dataflow graph
where appropriate. The outputs generated by the
scheduleClusters() stage are lists of scheduled pages
and segments as well as removed pages and segments.

2.3.2.8 Determine page and segment placement

After clusters have been scheduled and removed,
performPlacement() is responsible for assigning the
exact physical locations for the cluster nodes. In this
stage, memory management is also performed; the
memory blocks where page configuration and state as
well as segment data will exist are assigned. These
assignments are passed to the
issueReconfigCommands(). The inputs into the
performPlacement() stage are the lists of scheduled and
removed pages and segments from the previous stage,
scheduleClusters().

Before assigning locations to the newly scheduled
nodes, the scheduler’s array view is updated to reflect
removed pages and segments. The memory blocks
containing the configuration, state, and data of the
removed nodes are marked as cached information
(except for done nodes, whose associated memory
blocks are marked as empty).

The scheduler then examines the lists of scheduled
pages and segments. To maximize the benefits from
caching configurations, state, and data in array CMBs,
the scheduler tries to lock down already cached
information. The associated memory block is marked as
used and cannot be evicted.

After cached information is identified and properly
protected from eviction, the scheduled pages and
segments are placed in free CP and CMB locations.
Currently, there are no restrictions as to where
individual pages can be placed. Locations for pages are
randomly selected from a list of free CPs. However,
there are restrictions associated with where segments
can be placed. The CMB where a segment is placed
must also contain a contiguous memory block large

7 As part of the “frontier” scheduling heuristic, clusters
originally on the freeable cluster list may be
rescheduled on the array if enough space exists.

 21

enough to hold the segment data. Luckily, the current
memory management scheme guarantees this to be true
for each free CMB location (more information about
the memory management scheme is given below).

Figure 15 - Example of trial-based scheduling. Shaded
indicates speculatively scheduled and dots indicate
speculative stitch buffers.

Once all of the pages and segments have been
placed into free CPs and CMBs, any remaining pages
that does not have their configuration and state cached
on the array will have a free memory block allocated.
No further memory allocation is needed for segments,

because the CMB location dictates the location of the
segment data. For pages, the location of its
configuration and state cache is unimportant8 and
therefore can be allocated in any free memory block. At
this time, performPlacement() will arrange for faulted
memory segments to have the next data section loaded
from primary memory.

The memory management scheme used to allocate
memory blocks is the pseudo-“buddy” system memory
management. It is a derivative of the “buddy” system
[KNUTH73]. The pseudo-“buddy” system attempts to
minimize internal fragmentation while making it easy
to find free memory blocks of the necessary size. A
more in-depth discussion of this memory management
system is in Section 2.4.2.

The result of the performPlacement() stage is an
updated arrayCP and arrayCMB physical array view.
For each element of these arrays, the scheduled entry
will be appropriately set to the page or segment
scheduled in that location. It will be the responsibility
of the issueReconfigCommands() stage to update the
active entry once reconfiguration is completed. In
addition the segment block table for each CMB is
updated with the most recent memory block allocations.

2.3.2.9 Issue reconfiguration commands

By the time the issueReconfigCommands() stage is
reached, the scheduling decisions for the current
timeslice have been made. It is the responsibility of this
stage to issue the reconfiguration commands so that the
physical array reflects the scheduling decisions. This is
done by stopping execution of the array, issuing
reconfiguration commands via the hardware API (see
Section 2.4.4), and then restarting execution of the
array. Afterwards, arrayCP and arrayCMB are updated
to reflect the reconfiguration (i.e. the scheduled entry is
copied to the active entry).

The first action performed by the stage is to stop all
execution of CPs and CMBs. The decision to stop the
entire array stems from the desire to simplify the
scheduler. This eliminates the need to determine the
portion of the array that would become affected by
reconfiguration. Given an array network structure
where this determination is simple, performing partial
array halting may be considered.

After the array has been halted, reconfiguration
commands are issued to load/dump CMB memory
blocks, reconfigure CPs/CMBs, and connect

8 It is assumed that the network allow reconfiguration
of CPs from any CMB on the array.

 22

input/output streams. The scheduler attempts to issue
multiple reconfiguration commands in parallel, as long
as there are no resource conflicts. The
batchCommandBegin() and batchCommandEnd() pair
are used to designate a parallel command set. The
packing of parallel reconfiguration commands is done
in a manner similar to scoreboarding [HENNESSY90].
As commands for reconfiguration are issued, the CPs
and CMBs involved are marked occupied. Future
commands are blocked from being packed in the batch
if they attempt to utilize a busy resource (i.e. CMB or
CP). The busy marks are cleared at the completion of a
batch command.

Once the array has been reconfigured, the entire
array is restarted with the new configuration. The
scheduler will not examine the status again until the
next timeslice.

2.3.2.10 Perform cleanup operations

The final stage of the scheduler is responsible for
performing garbage collection actions resulting from
nodes signaling done as well as stitch buffers becoming
empty. For each done node, performCleanup() looks at
the parent cluster, operator and process objects. If the
node is the last remaining member, the appropriate
parent object will be deleted. For done segments, access
to the memory region is returned to the user process.

In addition to done nodes, the stage also deletes
empty stitch buffer objects no longer needed in the
dataflow. This is only performed for stitch buffers
which are removed from the physical array. This
guarantees that the state and address pointers for the
stitch buffer are in a known and stable state.

This stage is not in the critical path of the scheduler
iteration. While currently inline with the other stages in
doSchedule(), it may be possible to create a separate
thread of execution responsible for cleanup. In that
case, adequate protection of the scheduler data via locks
needs to be implemented in performCleanup() to
guarantee nodes are not being deleted at the same time
they are being accessed.

2.4 Scheduler Implementation
Highlights

The SCORE scheduler contains several
implementation details which merit more in-depth
discussion. In the following sections, implementation
highlights of key areas are described, including: the
scheduling heuristic, memory management scheme,
deadlock detection, and simulator interfacing.

2.4.1 “Frontier” Scheduling Heuristic
The SCORE scheduler implements a specialized

version of priority-list scheduling. With traditional
priority-list scheduling, it is often the case that all
waiting tasks have equal opportunity to become read to
run. As a result, all waiting tasks must be examined
when making a scheduling decision.

However, given the large overhead of CP
reconfiguration, SCORE lends itself to applications
with largely feed forward dataflows. Feed forward
dataflows allow the compute pages in the design to
execute for longer periods of time, thereby amortizing
reconfiguration overhead. Another consequence of feed
forward dataflows is that ready to run waiting tasks are
largely isolated to the periphery of the scheduled
dataflow. The current scheduler implementation
attempts to take advantage of this fact to optimize
scheduling time.

The “frontier” scheduling heuristic separates the
traditional priority waiting list into a prioritized
“frontier” cluster list and a waiting cluster list. During a
normal scheduling iteration, the next cluster to schedule
is selected from the “frontier” list. The cluster’s
successor are removed from the waiting list and placed
on the “frontier” list. Figure 16 shows an example
dataflow with various elements of “frontier” scheduling
highlighted. In this example, cluster A is resident on the
array, therefore placing cluster D on the “frontier” list.
Cluster B is on the “frontier” list because it was on the
head list (the head cluster list will be explained below).
This leaves clusters C and E on the waiting cluster list.

There are some special cases that need to be
considered for the heuristic to function correctly:

?? How does the scheduling heuristic begin
scheduling when the runtime is initialized?

?? How does the scheduling heuristic continue
scheduling once the end of the dataflow is
reached?

?? How does the scheduling heuristic handle inter-
cluster feedback loops9?

When the runtime is started the “frontier” cluster
list is initialized to be empty. There needs to be a way
to seed the scheduling heuristic. By maintaining a head
cluster list from which the “frontier” cluster list is
loaded when empty, this special case is resolved.
Membership in the head list is defined to guarantee
starvation will not occur.

 23

Figure 16 - Example of Various Elements of "Frontier"
Scheduling

A cluster is placed on the head cluster list if:

?? It has no input streams, or

?? It has an input stream originating from the
processor, or

?? It has an input stream whose producer has
signaled done.

Figure 19 shows that clusters A and B satisfy the
above criteria for being on the head list.

Once the heuristic reaches the end of the dataflow,
there needs to be a way to continue the scheduling
heuristic. This case is also resolved with the head list.
When the heuristic reaches the end of the dataflow,
eventually the frontier list will become empty (unless
there are inter-cluster feedback loops, which is
addressed below). At this point, the “frontier” list is
loaded with the head list and the cycle is started again.

Unfortunately, the heuristic has an undesirable
behavior when presented with a design containing inter-
cluster feedback loops9. The potential problem is that
inter-cluster feedback loops will artificially keep the
“frontier” list filled, preventing the heuristic cycle from
restarting at the head list. The result is an oscillating
state as shown in Figure 17. This figure shows that,
given an array capable of holding either cluster R or
cluster S but not both, the system will oscillate between
cluster R resident and cluster S resident; cluster Q will
never be scheduled again. This must be handled to

9 Inter-page feedback loops are okay as long as they are
completely contained within a cluster. Inter-cluster
feedback loops can result from two situations: (i)
insufficient physical resources forcing a cluster to be
decomposed, exposing the feedback loop; (ii) a
feedback loop spanning multiple operators (i.e. C++
compositional operators).

avoid cluster starvation during scheduling. The current
implementation avoids this pathological case by
keeping track of the current “traversal” of the heuristic
and allowing each cluster to be scheduled only once per
“traversal”. The traversal count is incremented every
time the “frontier” cluster list becomes empty and is
reloaded from the head list. This avoids starvation in all
dataflow configurations assuming the head list is
properly maintained.

2.4.2 Pseudo-“Buddy” System Memory
Management

One of the ways to extract the necessary
performance from the reconfigurable array is by
caching CP configuration/state/input FIFOs as well as
CMB data/input FIFOs in array CMBs. This allows
reconfiguration to, theoretically, be done completely in
parallel to/from array memory as opposed to serially
across the CPU/array interface. However, intelligent
management of CMB memory space is necessary to
avoid pathologically bad caching that can lead to on-
chip serialization10.

The ideal memory management strategy is to
allocate variable-size segments tailored to the size of
what needs to be cached. This avoids the internal
fragmentation associated with fixed-size pages.
However, as caching activity increases, external
fragmentation increases. Also, the cache management
overhead is complicated to quickly find a best fit
segment.

On the other extreme are a fixed-size pages. Fixed-
size pages avoid the external fragmentation associated
with variable-size segments. However, the sizes of the
configuration, state, and input FIFOs and the memory
segment data differ significantly. This means either a
large page size or multiple small-pages for caching.
There is an incentive for keeping memory segment data
contiguous in CMBs; it is assumed that there is only
one set of address translation registers in each CMB.
Unfortunately, a single large page size incurs
significant internal fragmentation for configuration,
state and input FIFOs.

The compromise used by the scheduler is the
pseudo-“buddy” system. It is derived from the “buddy”
system [KNUTH73] [KNOWLTON65]. The “buddy”
system is a memory management scheme that attempts
to speed up the search for appropriately sized free
blocks (a problem with variable-sized segments) while

10 One example of on-chip serialization can be shown
through the example of caching all compute pages in
one CMB.

 24

trying to minimize the amount of internal fragmentation
(a problem with fix-sized pages). By successively
dividing the memory space into halves, the “buddy”
system is able to more tightly fit a free block to the
data. If a large free block needs to be recovered, the
smaller blocks to free are easily determined.

However, the runtime does not need the full
granularity of the “buddy” system. There are only two
types of blocks that need to be cached in the CMBs:
compute page cache and memory segment cache. The
compute page cache consists of configuration, state and
input FIFOs. The memory segment cache consists of
data and input FIFOs. There is no advantage to
separating the elements associated with the same
compute page or memory segment (i.e. a single
compute page cannot load both configuration and state
in parallel). Memory segment cache blocks will tend to
be larger than compute page cache blocks due to
segment data. Therefore, instead of dividing the
memory space into successive halves, the pseudo-
“buddy” memory system maintains only two levels of
granularity: LEVEL0 blocks (sized for maximum
memory segment cache blocks) and LEVEL1 blocks
(sized for maximum compute page cache blocks). (See
Figure 18)

The memory space is initially divided into full
LEVEL0 blocks. Any leftover space is marked as
“cruft” and is unused by memory segment cache
blocks. Each LEVEL0 block can be further subdivided
into LEVEL1 blocks with unused space marked as
LEVEL1 “cruft”. In Figure 18 (“Possible Allocations”),
there is an example of how an array CMB is allocated
at either LEVEL0 and LEVEL1.

Each LEVEL0 or LEVEL1 block can be in one of
four states: (i) free, (ii) unavailable, (iii) used, or (iv)
cached. All LEVEL0 blocks are initially marked free
with the corresponding LEVEL1 blocks marked
unavailable. Any remaining LEVEL1 blocks are
marked free.

Figure 17 - Example of Inter-Cluster Feedback Loop

Figure 18 - Allocation of CMB Memory Blocks in Pseudo-
“Buddy” System

The free state indicates that a block is currently not
occupied and may be allocated. The unavailable state
indicates that a block is currently occupied by another
level (i.e. an unavailable LEVEL0 block indicates it is
currently subdivided into LEVEL1 blocks; an
unavailable LEVEL1 block indicates that is currently
merged into a LEVEL0 block). The used state indicates
that a block is currently occupied and the owner
(compute page or memory segment) is currently
scheduled on the array; used blocks cannot be pre-
empted. The cached state indicates that a block is
currently occupied but the owner is currently not
scheduled; cached blocks can be reallocated as long as
dirty blocks are swapped out first.

An example of how blocks are initialized can be
seen in Figure 18 (“Initial State”). Each array CMB
contains a segment table object used to keep track of
which LEVEL0/1 blocks are currently free, unavailable,
used, or cached. In addition to the various block lists,
each segment table contains a map of the locations for
the blocks in the CMB.

When a memory segment is scheduled on the array,
a block is allocated in the same CMB. The scheduler
first looks for a free LEVEL0 block; if there are no free
LEVEL0 blocks, a cached LEVEL0 block is chosen
and evicted from the CMB. The runtime guarantees that
there is at least one free or cached LEVEL0 block in
each CMB. No LEVEL1 blocks are ever evicted when
allocating LEVEL0 blocks.

When a compute page is scheduled on the array, a
similar process occurs. However, the block can be
allocated in any CMB on the array. It is assumed that
the routing network on the array supports configuration
of a CP from any arbitrary CMB. The runtime
randomly picks a CMB on the array11 and looks for a
free LEVEL1 block; if there are no free LEVEL1
blocks, but there are cached LEVEL1 blocks, a cached
LEVEL1 block is chosen and evicted from the CMB.

11 By randomly choosing the CMB, the location of the
compute page configurations is evenly spread out,
allowing for more parallelism in reconfiguration.

 25

However, unlike LEVEL0 blocks, a CMB is not
guaranteed to have a free or cached LEVEL1 block.
Therefore, the runtime continues to search for a free or
cached LEVEL1 block until it succeeds or all CMBs
are exhausted. In the course of allocating a free or
cached LEVEL1 block, the runtime system will also
attempt to subdivide free or cached LEVEL0 blocks to
obtain the necessary LEVEL1 blocks.

When a compute page or memory segment is
scheduled on the array, the corresponding cached block
is marked used to prevent it from being evicted. Once
removed, a page’s or segment’s corresponding cached
block is marked cached, allowing it to be evicted if
necessary.

The final condition to consider is when a page or
segment signals done. When a memory segment is
done, its LEVEL0 block is marked free and returned to
the free LEVEL0 list. When a compute page is done, its
LEVEL1 block is also marked free and returned to the
free LEVEL1 list. However, as a policy, the pseudo-
“buddy” memory system attempts to maintain a given
block of memory as a larger LEVEL0 block instead of
the smaller LEVEL1 blocks. Therefore, whenever a
LEVEL1 block is freed, the runtime system attempts to
consolidate it into a LEVEL0 block.

2.4.3 Deadlock Detection & Bufferlock
Detection/Resolution

To avoid artificially deadlocking the user’s design,
the scheduler must occasionally perform bufferlock
detection and resolution. Bufferlock is a restricted form
of deadlock that is caused by the limited token buffer
space in the stream links connecting pages and
segments. Bufferlock can be introduced by the runtime
during the mapping of the abstract dataflow, where
stream buffering is assumed to be unlimited, to the
physical hardware, where real limits exist.

The scheduler performs deadlock and bufferlock
detection by discovering producer-consumer
dependency cycles. The scheduler starts by constructing
the current producer-consumer dependency graph.
Figure 19 shows an example of a design dataflow and
its corresponding dependency graph. The solid edges
indicate the token stream connections. The dashed
edges indicate the dependency edges. Each node is
annotated with dots on its input/output ports: a dot on
an input port indicates the node is consuming from that
input stream, a dot on an output port indicates that the
node is producing to that output stream. The streams are
annotated with their empty or full status.

Figure 19 - Example of Dependency Cycle in Bufferlock
Detection

The nodes of the dependency graph consist of the
nodes of the dataflow (i.e. pages and segments). A fake
processor node is inserted which consumes from all
streams read by the processor and produces to all
streams written to by the processor. In the dependency
graph, a dependency edge exists between two nodes if

?? A node is trying to produce tokens to a full output
stream (i.e. in Figure 19, A-to-B and B-to-D); in
this case, the edge starts from the producer node
and ends at the consumer node, or

?? A node is trying to consume tokens from an empty
input stream (i.e. in Figure 19, D-to-C and C-to-
A); in this case, the edge starts from the consumer
node and ends at the producer node.

Once the producer-consumer dependency graph is
constructed, a cycle discovery algorithm is used to
return any cycles that exist, including the streams that
make up each cycle. The current implementation uses a
modified version of depth-first-search (DFS). The
advantage of using depth-first-search is the linear
complexity on the number of nodes and edges. The
disadvantage of using DFS is that not all bufferlock
stream cycles may be detected in one pass. It may
require more than one timeslice to detect all bufferlock
cycles. However, this is an acceptable compromise
since a more exhaustive search would be exponential in
complexity.

The result of cycle discovery is a list of cycles
complete with component streams. The bufferlock
detection code attempts to remove duplicate entries, as
well as any cycles that cross the fake processor node12.
Inherent deadlock cycles in the user’s design can also
be detected by searching for dependency cycles
consisting of purely empty streams. Detected deadlock

12 The scheduler currently does not know which streams
the processor is reading from or writing to. In the
future, the scheduler may be able to properly detect
processor stream reads and writes.

 26

cycles are passed to deadlock resolution. Any
remaining cycles are passed to bufferlock resolution.

Bufferlock resolution attempts to insert stitch
buffers to break bufferlock dependency cycles. Given a
list of bufferlock cycles, it simply takes the first full
stream of each cycle and inserts a stitch buffer. If the
producer and consumer nodes of the selected stream are
resident on the array, bufferlock resolution attempts to
schedule the newly added stitch buffers onto the array.

Deadlock resolution is simple. Once an inherent
deadlock is detected at runtime, the only solution
available is to terminate the user design. To guard
against deadlocks detected using stale data, the current
implementation includes hysterisis to prevent false
positives. A design must test positive for deadlock
twice in a row before the design is terminated.

2.4.4 Simulator Interface
All reconfiguration is performed through a

hardware API. The hardware API includes all of the
commands necessary to load/dump CPs and CMBs,
transfer blocks of memory, and start/stop the array. The
current implementation of the API consists of the
following commands:

?? getArrayInfo()
Returns the current hardware configuration (i.e.
array size and CMB size).

?? getArrayStatus()
Returns the current CP/CMB status of
pages/segments (i.e. stalled pages, done pages,
etc.)

?? startPage()/stopPage()
Starts or stops the indicated CP.

?? startSegment()/stopSegment()
Starts or stops the indicated CMB.

?? loadPageConfig()
Loads a configuration for a CP from a given
CMB.

?? loadPageState()/dumpPageState()
Loads or dumps the state for a CP from/to a given
CMB.

?? loadPageFIFO()/dumpPageFIFO()
Loads or dumps the input FIFOs for a CP from/to
a given CMB.

?? setSegmentConfigPointers()/getSegmentPointers()
Sets or retrieves the mode, status and address
pointer registers for a CMB13.

13 There are also several specialized API calls for
modifying individual registers such as

?? loadSegmentFIFO()/dumpSegmentFIFO()
Loads or dumps the state for a CMB from/to a
given CMB.

?? memXferPrimToCMB()/memXferCMBToPrim()
Transfers a block of memory between a CMB and
primary CPU memory.

?? memXferCMBToCMB()
Transfers a block of memory between two CMBs.

?? connectStream()
Connects the output port and input port of two
CPs/CMBs via the array routing network.

All reconfiguration commands are issued in
batches. Batches are designated with a
batchCommandBegin() … batchCommandEnd() pair.
Commands within the same batch are issued effectively
in parallel14. It is the responsibility of the issuer (i.e.
scheduler) to guarantee that commands within a batch
do not have resource conflicts, such as loading the
configuration and state for the same CP. The
batchCommandEnd() will use simple scoreboarding to
check for resource usage violations.

The purpose of this extra layer of abstraction is to
ease future migration to physical hardware, as well as
make the scheduler implementation less susceptible to
array design changes. The actual implementation of the
array is black-boxed from the scheduler.

changeSegmentMode(),
changeSegmentTRAandPBOandMAX(), and
resetSegmentDoneFlag().
14 In reality, batched commands are issued with a one
clock cycle offset because it is assumed only one
command can be issued per cycle.

 27

3 Results
Several applications were developed using the

SCORE compute model. They are used to benchmark
the scheduler effectiveness and demonstrate scheduler
functionality. The applications that are mapped include:
wavelet encoder, wavelet decoder, and JPEG encoder.

Basic performance scaling experiments were
performed where the number of CPs is varied to
observe the effect on application makespan15. In
addition, runtime cost measurements were preformed to
better understand future areas for optimization.

3.1 Application Overview

3.1.1 Wavelet Encoder/Decoder

The discrete wavelet transform used in the wavelet
image encoder/decoder is a recursive operation. An
image is first decomposed into low frequency and high
frequency components. The decomposition is repeated
on the low frequency component. The recursion goes
on for as much iteration as is mandated by the
compression algorithm. In our particular algorithm, this
recursion is finite and known statically.

Mathematically, each decomposition passes each
line of original data through a high-pass filter and a
low-pass filter in parallel and down-samples the output
streams of each filter by a factor of two. The total
number of samples is preserved. One iteration in the
above recursion consists of a horizontal decomposition
followed by a vertical composition. Afterwards, the
original dataset is split into four smaller datasets. The
compression algorithm used performs three recursive
iterations, discarding high frequency data from the first
recursion. (see Figure 20).

Figure 20 - Wavelet Encoder Dataflow

15 Makespan is the number of cycles it takes to execute
an application to completion.

The outputs of the discrete wavelet transform are
scalar quantized. Quantization coefficients are
compacted using zero-length encoding in all but the
lowest frequency output where runs of zeroes are not
expected. Finally, run lengths and levels are Huffman-
coded into output bit-streams. In wavelet decoder, the
above process is reversed, starting with the outputs
from the Huffman-coders.

3.1.2 JPEG Encoder
JPEG encoder mathematically decomposes the

input data into high and low frequency components.
The image is first segmented into 8x8 pixel blocks. The
decomposition is performed on every individual block
via the DCT (Discrete Cosine Transform), a unitary
transform that takes the pixel block as an input and
returns another 8x8 block of coefficients, most of which
are close to zero. The coefficients are scalar quantized
and scanned into a one-dimensional stream via a zigzag
scan. Quantized coefficients are compacted with zero-
length encoding, after which runs and lengths are
Huffman encoded (see Figure 21).

3.2 Performance Scaling
For these experiments, we assume a single-chip

system as described in Section 1.1.2. Table 1
summarizes the parameters we assume for the system
during the experiments. No limitations on routability
among pages are currently modeled.

The processor code (i.e. user process, IPC thread,
and scheduler thread) is executing natively on a
Pentium III microprocessor running at 500 MHz with
512 Mbyte of memory. The reconfigurable array is
simulated by the simulator thread on a second Pentium
III microprocessor running in parallel at 500 MHz. The
simulator accounts for all time required to reconfigure
pages, store state, and transfer data between memories
in the chip. Scheduling overhead is assumed to be
50,000 cycles and is overlapped with array execution.
This allows the performance of the scheduling heuristic
to be measured independent of the scheduler
implementation. Section 3.3 contains measurements of
the actual scheduler cost gathered from various runs.

All three mapped applications are run on a series of
architecture-compatible SCORE systems with a varying
number of CPs among the systems. The ratio between
the number of CPs and CMBs is kept at 1:1 when
possible. At the data points where this is not possible
(because the number of I/Os from a single page is too
great) the number of CMBs is held at the minimum
possible; additionally, a dashed line is used in the
graph.

 28

Figure 21 - JPEG Encoder Dataflow

Figure 22 shows the effect on wavelet encoder
makespan as array size is varied from 1 to 30 CPs. The
application is fully spatial at 30 CPs.

In general, makespan decreases monotonically with
increases in the array size. The few instances violating
monotonicity are believed to be artifacts of local
scheduling decisions.

The performance curve is shallower between 15
CPs and 30 CPs than between 1 CP and 15 CPs. This is
caused by CP under-utilization from the horizontal and
vertical transform stages (see Figure 20). Each stage
accepts an input token stream at rate of N and outputs
two output token streams, each at a rate of N/2. This
reduction in token stream rate propagates to subsequent
stages so that in the longest path, the rate is reduced to
N/32. Between 15 CPs and 30 CPs, the scheduling
overhead and reconfiguration cost is offset by increased
CP utilization (through time multiplexing). As the
number of CPs is reduced further, the physical CPs
become fully utilized and scheduling overhead begins
to adversely affect the total makespan. In addition,
because the number of CMBs also shrinks, the design
becomes CMB bound. This accounts for the steeper
performance curve as array size approaches 1 CP.

Figure 22 - Wavelet Encoder: Makespan vs. Array Size
(64-LUT CPs)

Simulator Parameters Value Assumed
Reconfiguration Time 5,000 cycles
Scheduler Timeslice 250,000 cycles
CP Size 64/512-LUTs
CMB Size 2 Mbits
External Memory Bandwidth 2 GBytes/s

Table 1 - System Parameters for Experiments

Three points can be derived from this graph:

?? The scheduler is able to automatically schedule a
SCORE application onto less hardware while
maintaining a reasonable area-time curve (CP-
makespan);

?? Not all CPs may be fully utilized in a fully spatial
implementation of a design;

?? The scheduler is able to automatically exploit CP
under-utlization and effectively time-multiplex the
design on to reduced hardware.

Figure 23 shows the effect on wavelet decoder
makespan as array size is varied from 1 to 27 CPs. The
application is fully spatial at 27 CPs. Since wavelet
decoder is similar to wavelet encoder, its performance
graph exhibits some of the same features as wavelet
encoder.

As with wavelet encoder, the performance graph
for wavelet decoder is shallower between 15 CPs and
27 CPs due to CP under-utilization. The non-
monotonicity between 5 CPs and 15 CPs is more
pronounced in wavelet decoding, but follows the same
general increases due to scheduling overhead and CMB
bounds.

Figure 23 - Wavelet Decoder: Makespan vs. Array Size
(64-LUT CPs)

 29

Figure 24 shows the effect on JPEG encoder
makespan as array size is varied from 1 to 13 CPs. The
JPEG encoder implementation is different from the
wavelet encoder/decoder because it is implemented
using 512-LUT CPs versus 64-LUT CPs. Another
difference with JPEG encoder is that its pages require a
large number of I/O streams. The largest number of
streams a page requires is 16. This is larger than the
number of pages in the design, making it impossible to
maintain a 1:1 CP-to-CMB ratio (see Section 4.4 for
future work that may alleviate this problem). Therefore,
all JPEG encoder performance numbers reflect a
constant array CMB count of 16.

As with wavelet encoder/decoder, the performance
graph for JPEG encoder is largely decreases
monotonically as the array size increases. However, it
does not experience the shallower performance curve
when nearly fully spatial. In fact, as seen in Figure 24,
JPEG encoder experiences significant performance
degradation immediately upon becoming non-fully
spatial. The large number of I/O streams incident to
certain pages causes a large number of CMBs to be
consumed. Therefore, JPEG encoder becomes CMB
bound much earlier than either wavelet encoder or
decoder.

3.3 Scheduler Runtime Cost Analysis
Empirical measurements were done of the

scheduler runtime cost to better understand the
overhead of automatic scheduling for reconfigurable
devices. In these measurements, per timeslice
scheduling cost is broken down into individual
scheduling stages (see Section 2.3.2).

Figure 24 - JPEG Encoder: Makespan vs. Array Size (512-
LUT CPs)

getArrayStatus(), issueReconfigCommands(), and
performCleanup() are omitted in the measurements.
getArrayStatus() and issueReconfigCommands() are
omitted because they consist largely of hardware API
calls. These calls do not contribute meaningfully to the
scheduler decision. performCleanup() is omitted since
it is not part of the scheduler timeslice critical path.

Measurements are performed using each of the
three mapped application to discover the effect of
design dataflow on the runtime cost. The measurements
are run on the same series of architecture-compatible
SCORE systems with a varying number of CPs among
the systems.

The SCORE runtime executable is compiled using
–O3 compiler optimizations. The measurements are
obtained using the “x86 Performance-Monitoring
Counters for Linux”16 library. This library utilizes
performance counters in Intel Pentium microprocessors
and measures the number of clock cycles taken for a
particular section of code. Overhead caused by
instruction and data cache misses are included in this
measurement.

Figure 25 shows the breakdown of scheduler
runtime cost as a function of array size when running
the wavelet encoder application. The scheduler cost per
timeslice ranges from about 60,000 cycles to 260,000
cycles. The three major contributors appear to be
gatherStatusInfo(), schedulerClusters(), and
performPlacement().

In general, scheduleClusters() consumes at least
half of the scheduler overhead. The only time this is not
true is when the design is fully spatial. The current
scheduler implementation does not special case a fully
spatial implementation. Therefore, time is still spent
discovering that no rescheduling needs to be performed.

An examination of Figure 25 suggests that a less
complex scheduling heuristic needs to be investigated.
This would reduce the cost contributed by
scheduleClusters(). One possible candidate is static
scheduling (see Section 4.3), which may reduce
overhead in several stages, including
gatherStatusInfo(), findFreeableClusters(), and
scheduleClusters().

An important issue to note is that the scheduling
overhead increases almost monotonically with increases
in array size. Since the scheduler is required to fill more
physical CPs and CMBs, this increase is expected.
However, this increase is sub-linear with the number of

16 http://www.csd.uu.se/~mikpe/linux/

 30

physical CPs. This may be evidence that the timeslice-
scheduling model is valid for reconfigurable devices.
Making batch scheduling decisions at timeslice
boundaries has many advantages, including amortizing
the overhead of status gathering and context switching.
In addition, batch scheduling offers the potential
opportunity to reduce stitch buffering.

Figure 26 shows a similar breakdown of scheduler
runtime cost when running the wavelet decoder
application. Since the two applications are similar in
overall design, their effects on runtime cost are similar.
The main difference that exists is the absence of the
dealWithDeadLock() stage through much of the wavelet
decoder run. Unlike wavelet encoder, wavelet decoder
does not contain streams susceptible to physical stream
buffer limitations. The occurrence of deadlock
detection/resolution between 9 CPs and 19 CPs is most
likely the result of stale array status causing premature
deadlock detection.

Finally, Figure 27 shows the breakdown of
scheduler runtime cost when running the JPEG encoder
application. Unlike wavelet encoder and decoder, JPEG
encoder has relatively few pages to schedule.
Therefore, one would expect scheduleClusters() to
consume less time. However, from the figure, overall
scheduling time has increased.

The reason for this increase is a result of the
“frontier” scheduling heuristic (see Section 2.4.1) The
“frontier” scheduling heuristic is similar to a breadth-
first-search and is linear on the number of nodes and
edges in the graph. JPEG encoder contains pages with
as many as 16 I/O streams incident. Wavelet encoder
and decoder pages have a maximum of 6 to 7 I/O
streams incident. This increase in I/O streams in the
cause for increased scheduleClusters() cost.

Figure 25 - Breakdown of Per Timeslice Scheduler Cost
(Wavelet Encoder Execution)

Figure 26 - Breakdown of Per Timeslice Scheduler Cost
(Wavelet Decoder Execution)

Figure 27 - Breakdown of Per Timeslice Scheduler Cost
(JPEG Encoder Execution)

 31

4 Future Work
In the process of designing and implementing the

SCORE scheduler, several areas for future work have
been identified. The areas of future work range from
optimizing scheduling time and result quality to
fairness guarantees for multiple simultaneous designs.

4.1 Expandable Stitch Buffers
Stitch buffers are added into the design dataflow to

retime data tokens between non-coresident pages and
segments. They are also used to resolve bufferlock
introduced by finite physical stream buffering. The
current implementation allows for at most one stitch
buffer between pages and segments. Additionally, the
size of individual stitch buffers is fixed and must fit
completely within a single CMB.

Ideally, we would like the size of a stitch buffer to
be expandable at runtime. One method of providing this
is by chaining together fixed-size stitch buffer. Figure
28 shows an example of an expandable stitch buffer
implemented as a chain of fixed size stitch buffers.

The expandable stitch buffer has been expanded to
a size of 10 Mbits while the physical CMB size is 2
Mbits. The expandable stitch buffer starts out as a
single 2 Mbit fixed-size stitch buffer (0-2 Mbit)
simultaneously read from by page 1 and written to by
page 0. As the expandable stitch buffer becomes full,
the scheduler creates another 2 Mbit fixed size stitch
buffer (2-4 Mbit). Page 1 continues to read from (0-2
Mbit) while page 0’s output stream is rerouted to write
to (2-4 Mbit). (0-2 Mbit) and (2-4 Mbit) are not
connected directly together and function strictly as
sequential read-only and sequential write-only
segments, respectively.

As the expandable stitch buffer becomes filled
again, additional 2 Mbit fixed-size stitch buffers are
created and added to the chain as shown in Figure 28.
Only the head and the tail of the stitch buffer chain are
read from or written to. The intermediate fixed-size
stitch buffers are not resident on the array. The chain is
collapsed as the head stitch buffer (i.e. (0-2 Mbit)) is
completely drained. The next stitch buffer then become
the head of the chain (i.e. (2-4 Mbit)).

4.2 Quantized Priority “Frontier”
Cluster List

From section 2.4.1, we see that the “frontier”
cluster list is managed as a priority list. The current
“frontier” cluster list is implemented as a binary heap
[CORMEN96]. The result is an insertion time of

O(log(N)), N being the number of clusters scheduled in
the system.

However, the level of granularity offered by a full
heap implementation may not be necessary. An
alternate implementation is a quantized priority list.
Arbitrary quantization levels are defined (i.e. low,
medium, high) and assigned a priority subrange (i.e.
low = 0 to 85000, medium = 85001 to 175000, high =
175001 to 250000). The quantized priority list is
implemented as an array of cluster linked lists. The size
of the array is defined as the number of priority levels.
Within each level, the clusters in the linked lists are
unordered. Figure 29 is an example of the quantized
priority list described. Clusters A, B, C, D, E, and F are
shown to be organized in the three-level priority list
with high, medium, and low priorities.

The advantage of a quantized priority “frontier”
cluster list an insertion time of O(1). Once the raw
priority of a cluster is determined, a simple comparison
yields the quantization level for the cluster. The new
cluster is simply appended to the end of the appropriate
list. When the scheduler wishes to remove a cluster
with the highest priority, it simply finds a priority level
with a non-empty cluster list and removes the head of
the list.

4.3 Static Scheduling in SCORE
In the current scheduler implementation,

scheduling decisions are dynamically made at runtime
based on runtime statistics gathered from the array.
Dynamic scheduling decisions allow the SCORE
scheduler to cope with dataflow with data-dependent
data rates or dynamically constructed dataflows.
However, there are situations where some or all of the
dataflow data rate is static. It would be desirable to pre-
compute the scheduling order in this situation. In
particular, following a pre-computed scheduling
“recipe” would reduce scheduling runtime.

Figure 28 - Example of Expandable Stitch Buffer
Implementation

 32

Figure 29 - Example of Quantized Priority "Frontier"
Cluster List Implementation

However, two questions remain:

?? When should the static schedule be calculated?

?? What should the static schedule specify?

The concern is that, in a general SCORE
environment, two potentially unknown variables can
affect static scheduling: (i) varying array size, and (ii)
multiple SCORE designs executing simultaneously. If
the static schedule is calculated at compile time and
specifies exactly when each page and segment should
be scheduled along with any necessary stitch buffers,
the schedule cannot cope with array size variations or
interference from other user designs.

If, instead, the scheduler calculates the static schedule
at operator instantiation time, the schedule can cope
with array size. However, an overhead is incurred at
each operator instantiation. Both solutions cannot cope
with interference from other design running
simultaneously on the array. In addition, the above
solutions cannot take advantage of dataflow graphs
where a subset of the dataflow is static data rate.
Figure 30 shows an example of a dataflow where
subsets of the dataflow, such as (A, B, C) and (F, G),
are internally static data rate, while the entire dataflow
is dynamic data rate.

Figure 30 - Example of Subsets of Nodes Marked as Static
Rate Dataflow

Therefore, a general static scheduling solution
cannot depend on the knowing the available compute
resources on the array. While an optimal solution
cannot be guaranteed, this means that no restrictions are
placed on the SCORE compute model. A possible
compromise solution is to have the static schedule only
specify the relative ordering of the pages and segments
within each scheduling subset. For example, in Figure
30, a static schedule for (A, B, C) might specify that the
order of scheduling is (i) A, (ii) B, (iii) C. Each static
scheduling subset is then collapsed into a single black-
boxed node when performing dynamic scheduling.
Whenever the dynamic scheduler determines it will
schedule one of the black-boxed static subsets, the pre-
computed schedule is used.

Some issues that need to be considered include:

?? How will the dynamic scheduler view the black-
boxed static subsets? (i.e. how many array
resources will it be viewed as consuming?)

?? Once a black-boxed static subset is encountered,
how will the precomputed schedule be interleaved
with the general dynamic schedule?

These issues are not addressed in this report. Their
resolution will be a part of any future static-dynamic
SCORE scheduler.

4.4 Min-edge-cut Clustering
Currently, the SCORE scheduler uses the cluster

abstraction to deal with the pathological case of
feedback loops in the dataflow. This is handled in
addOperator() where nodes of a feedback loop are
placed within a cluster to guarantee coscheduling (see
Section 2.3.1.1).

Another potential use of clustering is to reduce
runtime CMB usage. For example, in Figure 31 the top
dataflow shows a subset of a larger dataflow. This
subset is purely feed-forward. Using the current
clustering mechanism, each node is placed within its
own cluster. However, this results in a large number of
streams between clusters 1 and 2. If cluster 1 and
cluster 2 in the top dataflow become non-coresident, the
stitch buffering between cluster 1 and 2 would consume
three CMBs on the array. If the array contains few
CMBs, the design would quickly become CMB bound.
This suggests that cluster 1 and 2 should always be
coscheduled. The easiest way to achieve this is to
guarantee that node B and C reside in the same cluster
(see Figure 31 bottom dataflow).

 33

Figure 31 - Example of Possible Min-edge-cut Clustering

To implement this method of clustering, an
algorithm based on network flow techniques can be
employed. Max-flow min-cut algorithms exist that find
a min-cut bipartition in polynomial time ([EVEN79]
[FORD62] [HU85] [LAWLER76]). In [YANG94],
Yang and Wong propose a balanced bipartition
heuristic based on repeated max-flow min-cut
techniques. By applying these max-flow methods, a
SCORE operator could be partitioned into clusters with
a minimum number of I/O streams.

4.5 Process Fairness Guarantees
The current scheduler implementation includes a

one-level priority scheme. Priorities are calculated for
each cluster and the clusters are sorted using a binary
heap. This heuristic works well when there is only one
SCORE application running.

However, when multiple SCORE applications are
executing simultaneously, a one-level priority scheme
does not guarantee fairness among the processes. While
each process will eventually execute to completion (i.e.
no process will starve), a process with a large number
of pages or segments can monopolize array resources.
The current scheme makes no attempt to prioritize
clusters based on the parent process.

There are various methods for approaching this
problem. As the number of application increases, the
desired behavior is for the performance of each
application to degrade by an equal amount. One method
for achieving this is to time multiplex the array among
the processes. Given N applications, an allocation cycle
of N slots is defined. Each application is assigned one
slot. During its assigned slot, an application has
complete access to the array. Each slot is one or more
timeslices in duration. The “frontier” scheduling
heuristic may still be used. Each process would contain
its own “frontier” cluster list that is consulted during its
assigned time slot. The disadvantage of this method is
that a process with little or no work to perform still
occupies an equal slot as active processes.

An alternative to strict time multiplexing of the
array is a modified cluster priority scheme. The current
cluster priority can be augmented with process priority.
The process priority scheme can be one of various
scheduling techniques, such as lottery scheduling
[WALDSPURGER94]. The exact method for providing
process fairness in SCORE remains to be determined in
future implementations.

 34

5 Conclusion
We have presented an implementation of a

dynamic runtime array scheduler for the SCORE
compute model. Work presented indicates that dynamic
scheduling of designs onto varying-size reconfigurable
hardware is possible. In addition, the scheduler is able
to time-multiplex designs onto reduced hardware and
still achieve acceptable area-time curves by
automatically exploiting resource under-utilization (i.e.
wavelet encoder and decoder). Through scheduler cost
analysis, we have found that the current implementation
does not yet meet the 50,000 cycle overhead goal.
However, several ideas have been discussed that may
help reduce the overhead, including: static scheduling
for subset dataflows and priority list quantization.
Overall, this project is successful in its goal to show
that dynamic and automatic scheduling of designs onto
reconfigurable hardware is indeed possible using the
SCORE compute model. The current implementation
serves as an important framework for future scheduler
development in SCORE.

 35

6 Appendix – Scheduler
Data

The SCORE scheduler uses several specialized
data types and structures to organize user designs and
maintain the scheduler’s task lists. In this section, we
describe the most important and common data types as
well as the key data structures used by the scheduler.

6.1 Data Types
The user’s design is maintained in a hierarchy of

C++ objects. The hierarchy levels include:
ScoreProcess, ScoreOperatorInstance, ScoreCluster,
ScoreGraphNode and ScoreStream. At the highest
level, a ScoreProcess is directly mapped to a user
SCORE application. At the lowest level, a
ScoreGraphNode and ScoreStream are the dataflow
graph nodes and edges. The details of each data type
are described in this section.

ScoreProcess resides at the highest level of the
design hierarchy. An instantiation of ScoreProcess is
created every time a new SCORE application is linked
to the runtime. The scheduler maintains a list of
ScoreProcess objects indexed process ID. All
instantiated operators, clusters, pages, and segments for
a particular process are reachable by traversing
ScoreProcess data structures. During the normal course
of scheduling, the ScoreProcess list is not accessed.
However, this list is important during deadlock
detection/resolution (see Section 2.4.3), which is
performed on an entire process at a time. In the future,
the process list may be used to provide fairness and
performance guarantees among multiple SCORE
applications.

6.1.1 ScoreProcess

Figure 32 shows the important elements of the
ScoreProcess data type. As the top level of the
hierarchy, it contains lists of all components of an
application, including instantiated operators, clusters,
nodes, and streams. It also contains lists of streams that
are written to or read from by the processor. Each of the
instantiated operators, clusters, and nodes have a parent
ScoreProcess pointer pointing back to this data
structure.

In addition to the component and stream lists,
ScoreProcess also stores the process ID of the SCORE
application. In the event the user decides to instantiate
the design using separate operators, this allows the
scheduler to match operators with an existing SCORE
process. Finally, ScoreProcess contains a count of the
number of pages and segments as well as the number of

non-firing pages and segments since the last timeslice.
These variables are used to determine when to run
deadlock detection (see Section 2.4.3).

Figure 32 - Diagram of ScoreProcess Data Type

6.1.2 ScoreOperatorInstance

The ScoreOperatorInstance is the instantiated data
type of a user operator. It contains sufficient
information for the IPC thread to accurately reconstruct
the dataflow of the operator. ScoreOperatorInstance
objects are only accessed during operator instantiation
and operator cleanup in the performCleanup() stage
(see Section 2.3.2.10).

Figure 33 shows that the ScoreOperatorInstance
data type contains lists of the pages and segments
making up the operator. The “pages” and “segments”
variables indicate the number of pages and segments in
the individual lists. Finally, a pointer exists to reference
back to the parent ScoreProcess once the parent process
has been identified.

Figure 33 - Diagram of ScoreOperatorInstance Data Type

6.1.3 ScoreGraphNode

The ScoreGraphNode data type is the base class for
ScorePage (see Section 6.1.4) and ScoreSegment (see
Section 6.1.5). It contains the necessary variables and
lists to link the node into the dataflow as well as the
design hierarchy. In addition, it also provides a place to
store status information concerning the node.

Figure 34 shows the important variables in the
ScoreGraphNode data type. It contains a list of the

 36

node’s input and output streams as well as pointers to
the parent ScoreProcess, parent ScoreOperatorInstance,
and parent ScoreCluster (see Section 6.1.8). The exact
number of input and output streams is indicated in the
“inputs” and “outputs” variables. Variables also exist to
store node status, such as: if the node has signaled done,
if the node is resident, and if the node is being
scheduled on the array. If the node is resident, its
location on the array is stored in residentLoc. Finally,
didNotFireLastResident is set if the node did not
consume or produce tokens during the last timeslice it
was resident on the array. The scheduler uses this to
determine when to perform deadlock detection (see
Section 2.4.3).

Objects of type ScoreGraphNode are never
instantiated directly by the runtime system. Rather, the
system instantiates the derivative types: ScorePage and
ScoreSegment.

Figure 34 - Diagram of ScoreGraphNode Data Type

6.1.4 ScorePage

The ScorePage data type is derived from
ScoreGraphNode. It is a specialized version of
ScoreGraphNode used to represent SCORE pages in the
dataflow. Objects of this type are first created during
operator instantiation (see Section 2.3.1).

6.1.5 ScoreSegment

The ScoreSegment data type is also derived from
ScoreGraphNode. It is a specialized version of
ScoreGraphNode used to represent SCORE segments in
the dataflow. It also serves as a parent class for
ScoreSegmentStitch (see 6.1.7). Objects of this type are
first created either during operator instantiation (see
Section 2.3.1) or as a result of stitch buffer insertion
(see 2.3.2.7).

In addition to the variables in ScoreGraphNode,
ScoreSegment contains information pertinent to
segments: a pointer to the user data block for the

segment, the size of the data block, and the mode of the
segment. The data block pointer and size allow the
scheduler to properly load the CMBs on the array when
the segment is scheduled. The mode can be any one of
the modes described in Section 1.1.1.2). For most
segments, the mode is constant throughout the
instantiation of the segment. However, with
ScoreSegmentStitch, the segment mode may change
depending on the resident dataflow nodes.

6.1.6 ScoreStream

While ScoreGraphNode describes the nodes of the
dataflow graph, ScoreStream describes the token stream
connections between pages and segments. Figure 35
shows the key variables in ScoreStream. The most
important variables are src, srcNum, sink, and snkNum
which reference the producer and consumer nodes
along with the corresponding output and input port
numbers. In addition to the source and sink node
pointers, ScoreStream also stores information about the
type (page, segment, or processor) of the nodes in
srcFunc and snkFunc. This optimizes graph traversal by
providing type information without dereferencing src or
sink. Further optimization is provided by the srcIsDone
and sinkIsDone flags which indicate whether the source
and sink nodes have signaled done. Finally,
isCrossCluster and inProcessorArrayStream indicate
whether the stream connects nodes in different clusters
or if it provides processor-array communication.

6.1.7 ScoreSegmentStitch

The ScoreSegmentStitch data type is derived from
the parent class ScoreSegment. It serves to represent a
stitch buffer added by the scheduler to the dataflow (see
Section 2.3.2.7). Currently, its key variables are the
same as ScoreSegment. When expandable stitch buffers
are implemented, variables relevant to the expanded
stitch buffer will also be stored in this data type (see
Section 4.1).

The role of a stitch buffer is to capture the output
data from a stream whose nodes are not coscheduled. It
saves the output tokens until the stream consumer can
run in the array. The stitch buffer then provides the
previously captured tokens to the consumer. This helps
maintain the abstraction of infinite hardware resources.

6.1.8 ScoreCluster

The ScoreCluster data type is used to represent a
cluster of pages or segments. In SCORE, nodes in a
cluster are scheduled atomically; this means either all of
these nodes are resident or all are not resident. Clusters
are formed as part of the operator instantiation process.
To guarantee nodes of a feedback loop are never non-

 37

coresident (see Section 2.3.1.1). In the future, clusters
may also be used to optimize scheduling in other ways,
such as minimizing CMB usage (see Section 4.4).

ScoreCluster includes a list of member
ScoreGraphNodes, along with lists of ScoreStreams
that form the cluster input and output ports. There is
also a pointer to the parent ScoreProcess.
Complementing nodeList, there are counts of the
number of individual pages and segments in the cluster.
There are also flags for whether the cluster is resident,
scheduled, or considered freeable. Finally, the
isFrontier, isHead and lastFrontierTraversal variables
are specialized fields used by the “frontier” scheduling
heuristic (see Section 2.4.1).

6.2 Data Structures
The SCORE scheduler maintains several data

structures that allow it to keep track of the state of the
array as well as facilitate transferring decisions between
scheduler stages (see Section 2.3.2).

Figure 35 - Diagram of ScoreStream Data Type

Figure 37 shows a diagram of the important data
structures in ScoreScheduler. The entire design
hierarchy can be accessed via the list of
ScoreProcesses, processList. The scheduling task list
and resident cluster list consist of frontierClusterList,
headClusterList, waitingClusterList, and
residentClusterList. These are used by the “frontier”
scheduling heuristic (see Section 2.4.1). The streams
used to communicate between the processor and array
are stored in processorIStreamList and
processorOStreamList. Any stitch buffers added to
handle non-coresident streams as well as those added to
resolve bufferlock are stored in stitchBufferList.

Figure 36 - Diagram of ScoreCluster Data Type

As the scheduler schedules and removes pages and
segments, arrayCP and arrayCMB are updated to reflect
the resident nodes on the array. These are arrays whose
elements consist of ScoreArrayCP and
ScoreArrayCMB. The main fields in ScoreArrayCP and
ScoreArrayCMB are:

?? Active (the page or segment that is resident at this
location).

?? Scheduled (the page or segment that is scheduled
to be resident at this location).

Figure 37 - Diagram of data structures in ScoreScheduler

 38

These arrays are used when making scheduling
decisions as well as during array reconfiguration.

The scheduler also maintains data structures that
are used to communicate decisions between scheduler
stages (see Section 2.3.2). These include:

?? cpStatus and cmbStatus: current array status from
getArrayStatus();

?? doneNodeList and doneClusterList: nodes and
clusters considered done by
findDoneNodePagesSegments();

?? freeableClusterList: clusters considered freeable
by findFreeableClusters();

?? faultedMemSegList: segments determined to have
experienced an address fault by
findFaultedMemSeg();

?? scheduledPageList, scheduledMemSegList,
removedPageList, removedMemSegList,
configChangedStitchSegList: pages and segments
scheduled or removed by scheduleClusters(); in
addition, any resident stitch buffers needing mode
adjustment.

The final variables in the scheduler are
schedulerDataMutex, currentTimeslice, and
currentTraversal. The schedulerDataMutex is a lock
variable used to synchronize between the IPC thread
and the scheduler thread for access to the scheduler data
structures. The currentTimeslice variable allows the
scheduler to keep track of the number of timeslices that
have elapsed. Finally, the currentTraversal variable is
used by the “frontier” scheduling heuristic to prevent
scheduling starvation (see Section 2.4.1).

 39

7 Bibliography

[BHATTACHARYYA95] S.S. Bhattacharyya, S. Sriram, E.A. Lee. Minimizing Synchronization
Overhead in Statistically Scheduled Multiprocessor Systems. In
Proceedings of the International Conference on Application Specific
Array Processors, 1995.

[BHATTACHARYYA96] S.S. Bhattacharyya, P.K. Murthy, E.A. Lee. Software Synthesis From
Dataflow Graphs, Kluwer Academic Publishers, Norwell, Massachussets,
1996.

[BUCKLEE92] Joseph T. Buck, Edward A. Lee. The Token Flow Model. Presented at
Data Flow Workshop, Hamilton Island, Australia, May 1992.

[BUCKLEE93] Joseph T. Buck, Edward A. Lee. Scheduling Dynamic Dataflow Graphs
with Bounded Memory Using the Token Flow Model. In Proceedings of
ICASSP’93, Minneapolis, Minnesota, April 1993.

[BUCK93] Joseph T. Buck. Scheduling Dynamic Dataflow Graphs With Bounded
Memory Using the Token Flow Model, Technical Memorandum
UCB/ERL M93/69 (Ph.D. thesis), EECS Dept., University of California,
Berkeley, 1993.

[BUCK94] Joseph T. Buck, Static Scheduling and Code Generation from Dynamic
Dataflow Graphs with Integer-valued Control Streams. In Asilomar
Conference on Signals, Systems, and Computers, Pacific Grove, CA, Oct.
30-Nov. 2, 1994.

[CASPI00] Eylon Caspi, Michael Chu, Randy Huang, Joseph Yeh, André DeHon,
John Wawrzynek. Stream Computations Organized for Reconfigurable
Execution (SCORE): Introduction and Tutorial. To appear in
Proceedings of the 10th International Workshop on Field Programmable
Logic and Applications (FPL’00), August 2000.

[CORMEN96] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms, The MIT Press, Cambridge, Massachusetts,
1996.

[DEHON96] André DeHon. Reconfigurable Architectures for General-Purpose
Computing, AI Technical Report 1586 (Ph.D. thesis), MIT Artificial
Intelligence Laboratory, 545 Technology Sq., Cambridge, MA 02139,
October 1996. http://www.ai.mit.edu/people/andre/phd.html

 40

[EVEN79] S. Even. Graph Algorithms. Computer Science Press, 1979.

[FORD62] J. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

[FRANKE96] H. Franke, P. Pattnaik, L. Rudolph. Gang Scheduling for Highly Efficient
Distributed Multiprocessor Systems. In Proceedings of the 6th Symposium
on Frontiers of Massively Parallel Computation (Frontiers ’96),
Annapolis, Maryland, Oct. 27-31, 1996.

[GAJSKI92] D.D. Gajski, N.D. Dutt, A.C-H. Wu, S.Y-L. Lin. High-Level Synthesis:
Introduction to Chip and System Design. Kluwer Academic Publishers,
Boston, Massachusetts, 1992.

[HA97] Soonhoy Ha, Edward A. Lee. Compile-Time Scheduling of Dynamic
Constructs in Dataflow Program Graphs. In IEEE Trans. On Computers,
vol. 46, no. 7, July 1997.

[HAUSER97] John R. Hauser and John Wawrzynek. Garp: A MIPS Processor with a
Reconfigurable Coprocessor. In Proceedings of the IEEE Symposium on
Field-Programmable Gate Arrays for Custom Computing Machines,
pages 12-21. IEEE, April 1997.

[HENNESSY90] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, Inc., 1990, pp 290-
299.

[HU85] T. C. Hu and K. Moerder. Multiterminal Flows in a Hypergraph. Hu and
Kuh eds. IEEE Press, 1985.

[KNOWLTON65] K. C. Knowlton. “A Fast Storage Allocator”. In Communications of the
ACM, vol. 8, pp. 623-625, Oct. 1965.

[KNUTH73] D. E. Knuth. The Art of Computer Programming, Volume 1: Fundamental
Algorithms, 2nd Ed., Reading, MA: Addison-Wesley, 1973.

[KONSTANTINIDES90] K. Konstantinides, R.T. Kaneshiro, J.R. Tani. Task Allocation and
Scheduling Models for Multiprocessor Digital Signal Processing. In IEEE
Trans. on Acoustics, Speech, and Signal Processing, vol. 38, no 12,
December 1990.

[LAWLER76] E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt,
Rinehart & Winston, New York, 1976.

 41

[LEE91] Edward A. Lee. Static Scheduling of Dataflow Programs for DSP.
Chapter 19 in Advanced Topics in Data-Flow Computing, ed. J-L.
Gaudiot and L. Bic, Prentice Hall, Englewood Cliffs, New Jersey, 1991.

[LIAO94] G. Liao, E.R. Altman, V.K. Agarwal, G.R. Gao. In Proceedings of the
27th Annual Hawaii International Conference on System Sciences, 1994.

[PERISSAKIS99] Stylianos Perissakis, Yangsung Joo, Junhong Ahn, André DeHon, and
John Wawrzynek. Embedded DRAM for a Reconfigurable Array. In
Proceedings of the 1999 Symposium on VLSI Circuits, June 1999.

[PINO95] J.L. Pino, S.S. Bhattacharyya, E.A. Lee. A Hierarchical Multiprocessor
Scheduling System for DSP Applications, In Asilomar Conference on
Signals, Systems, and Computers, October 1995.

[TAU95] Edward Tau, Ian Eslick, Derrick Chen, Jeremy Brown, and André DeHon.
A First Generation DPGA Implementation. In Proceedings of the Third
Canadian Workshop on Field-Programmable Devices, pages 138-143,
May 1995.

[TSU99] William Tsu, Kip Macy, Atul Joshi, Randy Huang, Norman Walker, Tony
Tung, Omid Rowhani, Varghese George, John Wawrzynek, and André
DeHon. HSRA: High-Speed, Hierarchical Synchronous Reconfigurable
Array. In Proceedings of the International Symposium on Field
Programmable Gate Arrays, pages 125-134, February 1999.

[WALDSPURGER94] Carl A. Waldspurger and William E. Weihl. Lottery Scheduling: Flexible
Proportional-Share Resource Management. In Proceedings of the First
Symposium on Operating System Design and Implementation, November
1994.

[WILLIAMSON96] Michael C. Williamson, Edward A. Lee. Synthesis of Parallel Hardware
Implementations from Synchronous Dataflow Graph Specifications. In
Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,
CA, 1996.

[YANG94] Honghua Yang and D. F. Wong. Efficient Network Flow Based Min-Cut
Balanced Partitioning. In Proceedings of IEEE/ACM International
Conference on CAD-94, San Jose, CA, November 6-10, 1994.

[YEN95] C. Yen, S.S. Tseng, C-T. Yang. Scheduling of Precedence Constrained
Tasks on Multiprocessor Systems. In Proceedings of the 1st International
Conference on Algorithms and Architectures for Parallel Processing
(ICAPP 95), Brisbane, Qld., Australia, April 19-21, 1995.

 42

