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Abstract 
Reconfigurable computing devices offer substantial 

improvements in functional density and yield versus 
traditional microprocessors, yet remain out of general-
purpose use due in part to their difficulty of 
programming and lack of cross-device compatibility. In 
[CASPI00] a stream-based compute model called 
SCORE (Stream Computations Organized for 
Reconfigurable Execution) was introduced with a goal 
to provide a programming model for easily exploiting 
the computational density of reconfigurable devices. 
SCORE virtualizes reconfigurable resources (compute, 
storage, and communication) by dividing a computation 
up into fixed-size “pages” and time-multiplexing the 
virtual pages on available physical hardware. 
Consequently, SCORE applications can scale up or 
down automatically to efficiently run on a wide range 
of hardware. In this project we implemented project 
implements a dynamic runtime scheduler for SCORE 
that virtualizes the reconfigurable computation fabric 
and automatically manages the execution of SCORE 
applications in hardware. Initial performance scaling 
experiments show that a dynamic scheduler is able to 
automatically scale applications on reduced hardware 
and exploit hardware under-utilization to achieve 
reasonable area-time curves. In this paper, we present 
the basic scheduler details and runtime system flow 
along with key implementation highlights, such as 
scheduling heuristics, memory management, and 
deadlock detection.  
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1 Introduction 
A reconfigurable device is a programmable 

semiconductor chip containing an array of configurable 
logic blocks and interconnects. These logic blocks and 
interconnect can be configured to perform computations 
by physically loading instruction bit-streams into the 
array. By loading a different instruction bit-stream, 
these devices can be reconfigured to perform a different 
computation. 

Reconfigurable devices have proven extremely 
efficient for certain types of processing tasks. The key 
to their cost/performance advantage is that conventional 
processors are often limited by instruction bandwidth 
and execution restrictions or by an insufficient number 
or type of functional units. Reconfigurable logic can 
exploit more program parallelism. By dedicating 
significantly less instruction memory per active 
computing element, reconfigurable devices can achieve 
a 10x improvement in functional density over 
microprocessors. At the same time, this lower memory 
ratio allows reconfigurable devices to deploy active 
capacity at a finer grained level, allowing them to 
realize a higher yield of their raw capacity, sometimes 
as much as 10x versus conventional processors 
([DEHON96]). 

While reconfigurable devices can be used in 
isolation, there is also increasing interest in hybrid 
architectures such as DPGA ([DEHON96]) and Garp 
([HAUSER97]), coupling reconfigurable logic 
(FPGAs) with a general-purpose processor (RISC). 
This allows applications to specialize the reconfigurable 
hardware to match application requirements while 
allowing operations that run inefficiently on the 
reconfigurable device to execute on the processor. In 
addition, the processor is available as a platform for 
managing the reconfigurable device and providing 
common operating system support such as file system 
access. 

Another important development in reconfigurable 
devices is high-density embedded DRAM such as in the 
HSRA ([PERISAKISS99], [TSU99]). Devices available 
in the market today provide limited amounts of fine-
grain SRAM, currently up to 96 blocks of 4 Kbits1. This 
is insufficient for the data sets of many applications, 
making it necessary to manage the internal memory as a 
cache and store the full data set in external memory, 
accessible through a low bandwidth external interface. 
In addition, when a reconfigurable device needs to be 
configured “on the fly”, configuration time can be 
limited by the fact that configuration bitstreams reside 

                                                           
1 Xilinx XCV1000 

in external memory. If, on the other hand, bitstreams 
are preloaded into internal memory, bandwidth and 
latency to the configuration is increased by orders of 
magnitude, making rapid dynamic reconfiguration 
possible. DRAM, with an order of magnitude higher 
density than SRAM, solves both of these problems by 
providing the ability to integrate large memory blocks 
on-chip. 

Despite the advantages in cost/performance and 
developments in architecture and memory densities, 
reconfigurable devices still exist mainly as application-
specific devices, out of reach of typical software 
programmers. One of the reasons is the lack of 
convenient programming tools and environments. 
Another reason preventing reconfigurable devices from 
gaining acceptance is that attaining their 
performance/cost advantages often requires exposing 
the underlying hardware to the programmer, making 
user programs device-dependent. 

SCORE [CASPI00] attempts to solve both of these 
issues by providing a coherent model for expressing 
both processor and array computations in a way that 
can be easily mapped onto a reconfigurable array. With 
the help of a runtime system providing a infinite 
hardware abstraction, applications can be automatically 
run on SCORE-compliant hardware of various sizes. 
The runtime system contains a dynamic scheduler 
responsible for accepting a user designs and executing 
them on the hardware to completion. 

In the following section, a brief introduction to the 
SCORE compute model is presented. The remainder of 
this paper is dedicated to explaining the details of the 
current implementation of a dynamic SCORE scheduler 
and runtime system. Initial performance scaling results 
are given to show that automatic scheduling for 
reconfigurable arrays is able to achieve acceptable area-
time curves when presented with reduced hardware. 
Finally, the paper concludes with a discussion of future 
work and a conclusion. 

1.1 SCORE Compute Model2 
 

A compute model defines the computational 
semantics that a developer expects the hardware to 
provide. For convenience, the SCORE compute model 
is best viewed at two levels of abstraction. The 
execution model defines the run-time view of a SCORE 
computation. That is, it defines the run-time data 
structures used to define a SCORE computation as well 
as how the hardware will dynamically interpret this 

                                                           
2 Adapted from [CASPI00] 
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description. The programming model provides a higher 
level view of SCORE application composition and 
execution suitable for the programmer. It abstracts 
away some of the hardware size details visible in the 
execution model, focusing the programmer on the style 
of computation and program composition suitable for 
SCORE execution. In this report, only the execution 
model is discussed; consult [CASPI00] for details on 
the programming model. 

1.1.1 Execution Model 
 

For any programmable computing architecture, we 
will need a language or format for describing the 
computation that the computer is to perform. The key 
idea of computer architecture is that it defines the 
computational description that a machine will run (i.e. 
x86 ISA is a popular architectural definition for 
processors). Someone building a conforming device is 
then free to implement any detailed computer 
organization that reads and executes this same 
description of the computation (i.e. i80286, i80386, 
i80486, Pentium, and K6 are all different 
implementations which conform to the x86 ISA 
architectural definition and all run the same 
computational descriptions). Following this technique, 
the execution model for SCORE defines the run-time 
description of a computation for an architecture family 
and the semantics expected for executing this 
description. 

The SCORE execution model includes the 
following key components: 

?? Fixed-size compute page (CP) – a block of 
reconfigurable logic that is the basic unit of 
virtualization and scheduling. 

?? Memory segment – a contiguous block of memory 
which is the basic unit for data page management. 

?? Stream link – a mechanism for logically 
connecting the output of one node (CP, segment, 
processor, or IO) to another node. 

The run-time description defines all computations 
in terms of these basic building blocks. This description 
is independent of the size of the reconfigurable array, 
admitting architectural implementations with anywhere 
from one to a large number of compute pages and 
memories. The semantics provided by the architecture 
is that of an unlimited number of independently 
operating physical compute pages and memory 
segments. Compute pages and memories operate on 
stream data tagged with input presence and produce 

output data to streams in a similar manner. The use of 
presence tags provides an operational semantics that is 
independent of the timing of any particular SCORE-
compatible computing platform. 

1.1.1.1 Fixed Compute-Page Sizes 

Compute pages are the basic unit of virtualization, 
scheduling, reconfiguration, and relocation. In analogy 
with a virtual memory page, a compute page is the 
minimum unit of hardware that is mapped onto physical 
hardware and managed as an atomic entity. Each 
compute page represents a fixed-size piece of 
reconfigurable hardware (i.e. 64 4-LUTs). 

The compute page decomposition takes the stand 
that it is neither feasible nor desirable to manage every 
primitive computational building block (i.e. 4-LUT) as 
an independent entity—just as it is generally not 
desirable to manage every bit of memory as an 
independent memory. Rather by grouping together a 
larger block of resources, management and overhead 
can be amortized over the larger number of 
computational blocks. This grouping also allows hard 
problems, like placement and routing within a page, to 
be performed offline within the page. Note that it is 
necessary that the page size be fixed across an 
architecture family so that all family members can run 
from the same run-time (binary) description. Otherwise, 
page (re-)packing, placement, and routing would need 
to be performed online. The fixed page discipline 
requires that compilers partition (or pack) more abstract 
computational operators into these fixed size pages (see 
Figure 1). 

 
Figure 1 - Example of Page Decomposition: (a) original 
operator, (b) mapped to logic elements (LEs), (c) 
decomposed into fixed-size, 64-LE pages 
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Compute pages may contain internal state. Since 
the semantics provided by the hardware is that of an 
unbounded number of compute pages, the state 
associated with a CP must be saved and restored when a 
CP is swapped off of and on to a physical compute 
page. 

1.1.1.2 Memory Segments and Configurable 
Memory Blocks 

A memory segment is a contiguous block of 
memory that is managed as a single, atomic memory 
block for the purposes of swapping and relocation. 
Memory segments can be used in several modes (i.e. 
FIFO, read-only, random read-write). When configured 
into a particular operating mode, a segment will have its 
own stream ports (i.e. address input, data input, data 
output, control input) which connect it into the 
computational graph of pages and segments (see Figure 
2). 

To use a memory segment, the run-time system 
will map it into a configurable memory block (CMB)  
(see Figure 3). The CMB is a physical memory block 
inside the reconfigurable array with active stream links 
and interconnect to connect the memory segment into 
the live computation. In addition to holding user-
specified segments, CMBs are also used to hold 
segments containing CP configurations, segments 
containing CP state, and segments associated with 
stream buffers (see Figure 3). A single CMB may hold 
any number of each of these types of segments as long 
as their aggregate memory requirement does not exceed 
the CMB’s capacity. In our current vision, only a single 
such segment may actually be live at any point in time, 
but there is nothing in the SCORE definition that 
prevents an implementation from being designed to 
handle multiple, live segments in the same CMB. 

 
Figure 2 - Dataflow Computation Graph with both 
Compute Pages and Segments  

 
Figure 3 - Segments and Other Data mapped onto a CMB 

 
1.1.1.3 Physically Finite, Logically Unbounded 
Streams 

Streams form the data flow links between pages. A 
node (CP or segment) indicates when it is producing a 
valid data output with an out-of-band data present bit. 
The data value (token) is transported to the destination 
input of the consuming operator. The stream delivers all 
data items generated by the producer, in order, to the 
consumer, storing each until the consumer indicates it 
has consumed it from the head of its input queue (see 
Figure 4). 

When a stream is empty, the downstream operator 
will stall waiting for more input data. This discipline 
hides the detailed timing of operations from the 
programming model, guaranteeing correct behavior 
while allowing variations between implementations of 
the computing architecture. 

 
Figure 4 - Stream Signals 
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Even at the run-time level, these streams provide 
the abstraction of unbounded capacity links between 
producers and consumers. In practice, however, the 
streams are finite with an implementation-dependent 
buffer capacity. To implement the semantics of 
unbounded, FIFO stream links, an implementation will 
use backpressure (see Figure 4) to stall production of 
data items and the run-time system will allocate 
additional buffer space in the form of FIFO segments as 
needed. 

Physically, a stream may be realized in two ways: 

?? When both the producer and the consumer of a 
vstream are instantiated on the physical hardware, 
the stream link can be implemented as a spatial 
connection through the inter-page routing network 
between the two pages. (See Figure 6) 

?? When one of the ends of the stream is not resident, 
the stream data can be sinked (or sourced) from a 
stream buffer segment active in some CMB on the 
component. (See Figure 7) 

This allows efficient, pipelined chaining of co-
resident operators when space permits, as well as deep 
intermediate data buffering when it is necessary to 
sequentialize computation. 

1.1.1.4 Hardware Virtualization 

Compute pages, segments, and streams are the 
fundamental units for allocation, virtualization, and 
management of the hardware resources. At run-time, an 
operating system manager must handle the scheduling 
of virtual pages and streams onto the available physical 
resources, including page assignment and migration and 
inter-page routing. 

If there are enough physical resources, every page 
of a computation graph may be simultaneously loaded 
on the reconfigurable hardware, enabling maximum-
speed, fully-spatial computation. Figure 6 shows this 
case for the video processing operator of Figure 5. 

If hardware resources are limited, a computation 
graph will be time-multiplexed onto the hardware. 
Streams between virtual pages which are not 
simultaneously loaded will be transparently buffered 
through CMBs. Figure 7 shows this case for the video 
processing operator. Each component operator is loaded 
into hardware in sequence, taking its input from one 
CMB and producing its output to another. 
Configuration information and user data for swapped 
out pages are also stored in CMBs when the page is not 
resident. 

 
Figure 5 - Video Processing Operator 

 
Figure 6 - Fully Spatial Implementation of Video 
Processing Operator  

 
Figure 7 - Capacity-Limited, Temporal Implementation of 
Video Processing Operator  

1.1.2 Hardware Requirements 
SCORE assumes a combination of a sequential 

processor and a reconfigurable device. Although more 
stylized than simply placing an FPGA on an expansion 
bus, the requirements for a SCORE implementation are 
fairly modest. The reconfigurable array must be divided 
into a number of equivalent and independent compute 
pages. Multiple, distributed memory blocks are required 
to store intermediate data, page state, and page 
configurations. 

The interconnect between pages must: 

?? Provide adequate bandwidth to memory, allowing 
different memory pages to be used concurrently, 
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?? Support high bandwidth, low latency 
communication between active compute pages, 

?? Provide buffering for pipelining data, and a back-
pressure signal to stall upstream computation 
when the network buffer capacity is exceeded, 

?? Provide sufficiently rich interconnect to facilitate 
rapid, online routing. 

The compute pages themselves can be designed 
using any reconfigurable fabric as long as there is 
support for rapid reconfiguration. This support should 
include the ability to save as well as restore array state 
quickly. Although configuration caches may be 
beneficial (i.e. [TAU95], [HAUSER97]), we anticipate 
a wide range of applications where microsecond 
reconfiguration times are adequate for good 
performance. The subarray design from the HSRA 
[TSU99] is a feasible concrete implementation for a 
compute page. It provides microsecond reconfiguration 
and high-speed, pipelined computation. The symmetry 
of these compute blocks allows a single virtual compute 
page configuration to run on any physical compute page 
in the array. 

Each configurable memory block (CMB) is a self-
contained unit with its own address interface, data path, 
and address generator. Hence CMBs may be accessed 
independently and concurrently in a scalable system. 
The CMB can be an external RAM component or an 
on-chip memory bank (i.e. BRASS Embedded DRAM 
[PERISSAKIS99]) with logic to tie it into the data flow 
synchronization used by the interconnect network. The 
memory controllers need to support a simple paged 
segment model, allow the scheduler to relocate memory 
blocks within a physical memory page, and provide 
protection via segment bound registers. Since streaming 
access is commonly used during reconfiguration, state 
swapping, and stream buffer operations, dedicated 
stream access modes are useful to minimize external 
address bandwidth requirements. 

A SCORE-ready reconfigurable array must also 
support several out-of-band signals. These signals are 
used by the dynamic runtime scheduler to query the 
status of the executing CPs and CMBs. The scheduler 
uses the runtime status to evaluate the effectiveness of a 
particular design mapping. A simple scheduler requires 
the following basic signals: 

?? Each CP and CMB must have a concept of done to 
indicate it is done processing data. 

?? Each CP and cMB needs to keep track of how 
often it is stalled on input underflows and output 
overflows. 

?? Each CP and CMB must be able to report which 
I/O streams cause the current stall. 

The sequential processor plays an important part in 
the SCORE system. It runs the page scheduler needed 
to virtualize computation on the array, and it executes 
SCORE operators which would not run efficiently in 
reconfigurable implementation. Both of these functions 
require that the processor be able to control and 
communicate with the array efficiently. A single-chip 
SCORE system (i.e. see Figure 8) integrating a 
processor, reconfigurable fabric, and memory blocks 
could provide tight, efficient coupling of components. 

 
Figure 8 - Hypothetical, single-chip SCORE system 

Although a single-chip SCORE implementation 
offers benefits for performance and design efficiency, 
the SCORE model permits a wide range of 
implementations including one using conventional, 
commercial components. 

1.2 Scheduler Responsibilities 
The SCORE scheduler is one of the key 

components in the runtime system. It is responsible for 
three main tasks: 

?? It accepts operators partitioned into fixed-size 
pages and segments from the user program and 
schedule the design to completion; 

?? It manages all of the hardware resources on the 
array, including the CPs, CMBs and routing 
resources; 

?? It provides the functional abstraction of infinite 
hardware to the application. 
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In addition to these responsibilities, the scheduler 
must also guarantee that deadlock and bufferlock are 
not introduced into the design. Also, livelock, or 
starvation, should be avoided by the scheduling 
heuristic. In Section 2, we show how the current 
SCORE implementation fulfills these responsibilities. 

1.3 Related Work 
 
1.3.1 Multiprocessors 

SCORE shares with the multiprocessor community 
the notions of priority-list scheduling [GAJSKI92] and 
gang scheduling [FRANKE96]. Given a task 
precedence graph, priority-list scheduling uses a 
priority function to choose from among all tasks whose 
predecessors have completed, which to schedule. In the 
SCORE model, priorities can be used in conjunction 
with a dataflow graph to choose among operators 
whose predecessors have fired. Priorities may include, 
for instance the number of input tokens queued, and 
whether an operator configuration is already loaded on 
the array. [LIAO94] found that no single priority 
heuristic was optimal across different program 
structures and multiprocessor configurations, but that 
adaptive combinations thereof produced good results. 
Gang scheduling involves co-scheduling related tasks. 
In the SCORE model, it is clearly advantageous to co-
schedule neighboring operators from the dataflow 
graph. In addition, it is highly advantageous to co-
schedule all operators belonging to a feedback loop to 
avoid context swaps in each traversal of the loop. 

There are some hardware similarities between a 
SCORE-based reconfigurable array and traditional 
message-passing multiprocessors. The array consists of 
nodes containing a processor with memory, 
communicating via point-to-point paths on a fat-tree 
network. Each node, however, is much smaller than a 
microprocessor. A CP containing 64 dual-4-LUT 
blocks, for instance, is comparable in complexity to an 
ALU. Such small nodes necessitate centralized control 
(on an external processor) for context swapping and job 
scheduling. In addition, the array has operating costs 
different from multiprocessors. The streaming 
capabilities of the network make inter-page 
communication relatively cheap since pipelining can 
hide network latency. Context swaps, which cost 
hundreds to thousands of cycles, thus lead to very high 
amounts of lost computation. The disparity in cost 
between communication and context swaps is thus far 
more extreme than in multiprocessors, where tasks are 
longer lived, and communication (which may require 
kernel intervention) has cost more comparable to 
context swaps. 

1.3.2 Dataflow Systems 
Because fully dynamic, run-time scheduling can be 

prohibitively expensive, various efforts appear in 
multiprocessing literature to exploit compile-time 
scheduling [KONSTANTINIDES90], [YEN95]. Such 
efforts typically assume a fixed or highly predictable 
communication structure among known computational 
elements. Such restrictions are well modeled by 
dataflow computational models, in which a 
computation is described by the flow of tokens along a 
graph of computational operators, without explicit 
control structure. The SCORE model is essentially a 
dataflow on CP-sized macro-operators, each of which 
clusters traditional dataflow operators (specifically, 
integer-controlled dataflow operators in our restricted 
SCORE model). 

Synchronous Dataflow (SDF) is a dataflow 
computational model in which the number of tokens 
consumed and produced in each firing of an operator is 
known at compile time. SDR is thus amenable to static 
scheduling with minimal runtime overhead. Although 
SDF is not Turing-complete due to lack of conditional 
control, it is sufficient for many digital signal 
processing tasks (i.e. FIR/IIR filtering). A theoretical 
framework exists for statically scheduling SDF graphs 
on uniprocessors [BHATTACHARYYA96], which can 
find (or disprove the existence of) periodic firing 
schedules with guaranteed memory requirements and 
deadlock-free operation. Boolean-controlled Dataflow 
(BDF or Token Flow, [BUCKLEE92], [BUCKLEE93], 
[BUCK93]) and Integer-controlled Dataflow (IDF, 
[BUCK94]) are Turing-complete extensions of SDR 
that add simple conditional operators. Scheduling of 
BD and IDF graphs on uniprocessors typically requires 
clustering subgraphs to run in successive phases, so as 
to bound memory requirements. 

Scheduling dataflow graphs on parallel hardware 
has additional synchronization complications due to: (i) 
heterogeneous operator firing times, (ii) network 
delays, and (iii) clustering of operators on processors. 
[WILLIAMSON96] implements a mapping of SDF to 
VHDL for hardware generation, where the creation of 
arbitrary control and synchronization signals obviates 
the need for operator clustering. With regards to 
clustering on conventional multiprocessors, there has 
been some work in compile-time scheduling based on 
run-time profiles [HA97] as well as static graph 
analysis [BHATTACHARYYA95] [PINO95]. Fully 
dynamic scheduling, due to its high cost, is typically 
not the best solution in computational domains which 
have static guarantees, such as SDF. [LEE91] defines a 
taxonomy and discusses tradeoffs in the spectrum 
between fully-static and fully-dynamic dataflow 
scheduling. 
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[JONSSON96] describes a heuristic, on-line, SDF 
scheduling algorithm for idealized message-passing 
multiprocessors similar in some respects to the 
SCORE-based reconfigurable processor. The algorithm 
exploits pipelining by scheduling “linear clusters” of 
dataflow operators. Each node in such a cluster has 
exactly one dataflow successor in the cluster, so the 
nodes form a pipeline for tokens. The study reports 80-
90% utilization in the used processors for several feed-
forward applications and 10% utilization for a 
feedback-constrained application. The study does not 
discuss memory constraints for data streams entering or 
leaving clusters, so it is possible that the utilization 
reported is high due to large or infinite memory 
assumptions. 
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2 Methodology & 
Implementation 
 

2.1 Overview of System Flow 
Figure 9 shows the overall system flow of the 

current SCORE implementation, from operator 
instantiation to actual execution of the operator on the 
simulator. This figure represents the simplest situation: 
one single-threaded user application instantiating a 
single-operator design. The current system simulates 
the reconfigurable array fabric. 

The basic structure of a SCORE application is 
shown in Figure 9. At the start of the program, 
score_init() is called to initialize any SCORE-related 
variables as well as establish an interface with the 
runtime system. Any streams needed for passing data to 
or receiving data from the operator are instantiated so 
they can be passed to the runtime during operator 
instantiation. Then, the operators making up the design 
are instantiated. An IPC3 message is sent to the SCORE 
runtime, where it is received by the IPC thread. The 
application then performs any necessary computations 
and feeds data tokens to the operators for processing 
(via stream writes) and receives result tokens (via 
stream reads). It is expected that the bulk of the time 
will be spent in this step. Finally, once the application 
has completed its task, final cleanup is performed by 
calling score_exit(). 

The instantiated SCORE operators are abstract 
representations of algorithmic data transformations. 
Operators do not necessarily correspond to compute 
pages. It is the responsibility of the page partitioner to 
either decompose large operators or merge small 
operators into fixed size pages. However, because the 
current SCORE implementation lacks an automatic 
page partitioner, the page partitioning is performed by 
hand. For simplicity of hand partitioning, we have 
assumed that each operator is a self-contained 
composition of compute pages. The current scheduler 
data structures reflect this simplification (see Section 
6.1.2). Future implementations will reflect the true 
nature of operators once a partitioner exists. 

The SCORE runtime is implemented as a user-
level application consisting of 3 threads (see Figure 9): 
IPC, scheduler, and simulator. The role of each thread 
is: 

?? IPC: to receive operator instantiation requests 
from the IPC message queues, retrieve operator 

                                                           
3 Inter-Process Communication 

instances from persistent storage, instantiate the 
operator, and perform any necessary 
preprocessing before handing off the operators to 
the scheduler thread. 

?? Scheduler: to accept preprocessed operators from 
the IPC thread, decide which parts of operators 
should be scheduled onto the hardware, and issue 
reconfiguration commands to configure CPs and 
CMBs. 

?? Simulator: to simulate the functionality of the 
reconfigurable array, accept reconfiguration 
commands from the scheduler thread and simulate 
the behavior of the scheduled pages and segments. 

When an operator is instantiated from the SCORE 
application an IPC message is sent to the runtime 
containing a fully-resolved filename for the location of 
operator data along with instantiation parameters, such 
as operator bit width. The IPC thread receives the 
instantiation message and retrieves the file containing 
the operator data from the filesystem. The operator is 
instantiated with the provided instantiation parameters. 
The thread initializes data structures as well as performs 
clustering and optimizations before entering the 
operator into the shared scheduler data structures. If the 
scheduler thread is currently idle, a “reawaken” signal 
is sent to begin scheduling. 

The scheduler is invoked at fixed timeslice 
intervals. Once invoked, the scheduler examines the 
state of the array as well as its waiting lists to determine 
which pages and segments to schedule next on the 
array. Then the scheduler issues reconfiguration 
commands in the form of hardware API calls. The 
simulator provides a cycle-by-cycle simulation of the 
scheduled pages and segments. The hardware API 
serves as an abstraction layer so that when the simulator 
is replaced with real hardware, the scheduler will not 
need to be altered. 

Scheduler and array execution occur concurrently. 
At the beginning of the timeslice, the scheduler reads 
status from the array and then allows the array to 
continue executing. When the scheduler is ready to 
issue reconfiguration commands it stops activity on the 
array (see Figure 10). The advantage of this technique 
is that the array does not sit idle while the scheduler 
makes its decision. However, the consequence is that 
the scheduler may be working on stale array status. 
Minimizing scheduler decision time can reduce the 
staleness of the status. 



 
Figure 9 - High-level SCORE System Flow & Interaction

2.2 Scheduling Scenarios 
Before delving into the details of the scheduler 

flow and algorithm, it is beneficial to recognize 
common scheduling scenarios and the role of the 
scheduler in each situation. There are three key 
scenarios that illustrate the types of scheduling 
decisions that need to be made by the SCORE 
scheduler. In general, most SCORE execution can be 
classified as one of the following models: a small 
design that fits completely within a large array, a large 
design that does not completely fit within a small array, 
and a design that is bufferlocked (see Section 2.4.3) as a 
result of finite physical resources. This section explains 
the each of the basic scenarios as well as the role of the 
scheduler in each scenario. 

2.2.1 Small Design, Large Array 
The simplest scenario to imagine is when the user 

instantiates a design fitting completely within the 
physical array (for an example, see Figure 6). In this 
case, the scheduler performs three major tasks: 

?? Determine physical placement of the pages and 
segments on the array (Section 2.3.2.8), 

?? initiate array configuration (Section 2.3.2.9), and 

?? wait for pages and segments completion before 
removing them from the array (Section 2.3.2.3).  

 
Figure 10 - Concurrent Operation of Processor & Array 
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The reconfigurable array is not time multiplexed and 
the scheduler makes no meaningful scheduling 
decisions. 

2.2.2 Large Design, Small Array 
As programmers develop more complex 

applications in SCORE, the more common scenario will 
consist of a design so large that it no longer fits in a 
single array (for an example, see Figure 7). In this case, 
the scheduler must time multiplex the limited physical 
array among the pages and segments of the logical 
design. Changes in the schedule can be made at fixed 
timeslices or more frequently when the status of the 
array changes, such as when a page stalls on lack of 
input. 

In the current implementation, the scheduler uses 
fixed timeslices (see Section 2.3.2). At each timeslice, 
the effectiveness of the current design mapping is 
determined by sampling the array status. If the current 
mapping is determined ineffective (perhaps due to 
insufficient input data), the scheduler decides on the 
next set of pages and segments to map. Then, these 
nodes are placed, loaded, and run in a manner similar to 
Section 2.2.1. 

The goal of the scheduler in this case is to rapidly 
determine the best set of pages and segments to 
schedule at each timeslice. This task can be improved 
by preprocessing the user design. Pages and segments 
working closely with one another, such as feedback 
loops, can be marked together in a cluster (see Section 
2.3.1.1). By performing this preprocessing once at the 
beginning, effective scheduling decisions can be made 
more quickly at each timeslice. 

2.2.3 Bufferlocked Design 
Finally, sometimes logically correct designs may 

exhibit deadlock when mapped onto physical hardware. 
The cause of this deadlock is the limited size of the 
physical stream buffers versus the abstraction of infinite 
stream depth in the SCORE model. This can occur with 
designs that fit completely within the physical array as 
well as designs which must be multiplexed. When this 
occurs, the design is said to be bufferlocked. 

Since it is the responsibility of the scheduler to 
provide the abstraction of infinite hardware, the 
scheduler must detect and resolve this condition when it 
occurs. The simplest way to do this is to search for 
bufferlock on every timeslice. A more efficient method 
is to wait for the design to deadlock and then run the 
bufferlock detection routine. Once bufferlock is found, 
the bufferlock cycle is broken by artificially increasing 
the stream buffer depth by inserting CMBs to serve as 

FIFOs. Section 2.4.3 goes into more depth on the exact 
method used by the current scheduler implementation. 

2.3 Scheduler Flow 
This section explains the actual execution flow of 

the implemented scheduler. There are two types of flow 
in the SCORE scheduler: operator instantiation flow 
and timeslice iteration flow. Operator instantiation flow 
includes the sequence of steps performed by the 
scheduler every time an operator is instantiated. For 
most applications, this flow is experienced only once at 
the beginning of the run. Timeslice iteration flow 
describes the sequence of steps performed by the 
scheduler at every timeslice and is incurred multiple 
times in a run, depending on the application. 

2.3.1 Operator Instantiation 
Operator instantiation in the runtime system is 

handled by the IPC thread. Figure 9, shows the 
sequence of actions once an operator is instantiated by 
the user application. An IPC message containing the 
fully-resolved filename for the operator data is sent to 
the IPC thread within the runtime. The operator data is 
retrieved from the filesystem and the operator is 
instantiated with the given parameters. The result of 
instantiation is passed to the addOperator() method 
responsible for performing checks on the operator and 
preparing it to be scheduled. 

2.3.1.1 Adding a new operator 

Figure 11 shows the execution flow of 
addOperator(). Once addOperator() receives the 
instantiation of an operator, it is responsible for 
initializing the operator variables and preparing the 
pages and segments in the operator to be scheduled by 
the scheduler thread. 

Acquiring and releasing the lock on scheduler data 
structures prevents corruption of scheduler data 
structures from simultaneous changes by the IPC and 
scheduler threads. The major operations performed 
include running the SCC4 graph algorithm 
[CORMEN96] for cluster formation, checking physical 
constraints on the clusters, initialization and 
bookkeeping, and insertion of the clusters into the 
scheduler’s waiting list. 

The SCC graph algorithm takes a given directed 
dataflow graph and decomposes it into its strongly 
connected components. Strongly connected components 
of a graph consist of nodes which “are mutually 
reachable”. “Mutually reachable” means that starting 
from any node in a strongly connected component we 
                                                           
4 SCC: Strongly-Connected-Components 
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are able to reach any other node in the component by 
traversing edges. Figure 12 shows an example of a 
dataflow that has its strongly connected components 
marked. This property corresponds to feedback loops 
among pages and segments in an operator. We attempt 
to identify feedback loops in the dataflow because the 
nodes within a feedback loop must be handled in a 
special manner. If nodes in a feedback loop are allowed 
to be non-coresident, then the array will experience 
configuration thrashing. On each timeslice, the resident 
portion of the feedback loop will be able to process 
only a few tokens before it is starved for data provided 
by the non-resident portion. To prevent this situation 
from happening, once the system identifies the nodes of 
a feedback loop, those nodes are placed in a cluster 
which guarantees they will be scheduled on the array 
atomically. 

Once the operator is partitioned into clusters, 
addOperator() checks each cluster’s physical resources 
requirement. One of the requirements of a cluster is that 
is should be able to be scheduled on the array by itself 
to prevent schedule starvation (see Section 6.1). To 
guarantee this requirement, addOperator() examines 
each newly formed cluster and counts the number of 
pages that exist in the cluster. This number must be less 
than or equal to the number of physical CPs in the 
array. Next, it counts the number of segments plus the 
number of cluster IO streams. This number must be less 
than or equal to the number of physical CMBs in the 
array. The reason for counting the number of cluster IO 
streams is to determine the number of stitch buffers that 
could potentially be required. A cluster that does not 
meet these requirements is then decomposed into a 
smaller cluster with, hopefully, fewer requirements. In 
the current implementation, invalid clusters are 
decomposed into single-node clusters (i.e. only one 
page or segment in each cluster). Any remaining 
clusters that still do not pass the test will cause the 
entire operator to be rejected from the runtime system. 

If all clusters pass the check, addOperator() 
initializes the variables for the operator, pages, 
segments, and clusters. Then, some bookkeeping 
operations are done to synchronize the state of the 
system with the addition of the operator. These 
bookkeeping operations include: adding the operator to 
the parent process object, maintaining the processor-
array IO stream list, and adjusting the “frontier” 
scheduling head cluster list (see Section 2.4.1 for more 
explanation on the head cluster list). 

Finally, just before addOperator() finishes, the 
newly formed clusters are added to the scheduler’s 
waiting cluster list. There they await scheduling during 
the next timeslice. 

 
Figure 11 - Execution Flow of addOperator() 

 
Figure 12 - Dataflow Graph with Strongly Connected 
Components Marked5 

2.3.2 Timeslice Iteration 
Scheduling decisions are made at timeslice 

intervals. At predetermined times defined by the 
timeslice interval, the scheduler thread is woken up, 
examines the current state of the reconfigurable array 
and decides which portion of the dataflow to schedule 
on to the array and which to swap out. doSchedule() is 
the method called at each timeslice and it in turn calls 
several other methods to perform status gathering and 
scheduling (see Figure 13). 

                                                           
5 Adapted from Figure 23.9 on page 489 in 
[CORMEN96]. 
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The entire process consists of several stages. At the 
beginning of the timeslice, the status of the array is 
read. The array is allowed to continue executing while 
the scheduler makes its decision to hide the overhead of 
scheduling. Using the “frontier” scheduling heuristic 
(see Section 2.4.1), clusters are marked to be removed 
or scheduled. Placement is performed to determine 
where the scheduled pages and segments will reside on 
the array. Finally, array execution is halted and 
reconfiguration commands issued to dump and load the 
appropriate pages and segments. The array is restarted 
and final cleanup is performed. Like addOperator(), 
doSchedule() acquires and releases the lock on 
scheduler data structures to prevent the corruption of 
the data structures from simultaneous changes by the 
IPC and scheduler threads. 

 

 
Figure 13 - Execution Flow of doSchedule() 

2.3.2.1 Retrieving physical array status 

After doSchedule() acquires the scheduler data 
lock, the scheduler reads the status from the physical 
array. The status includes: 

?? Which pages and segments are stalled on input or 
output streams along with the number of cycles 
each node has been stalled and which streams are 
causing the stalls. 

?? Which pages and segments have finished 
executing and signaled done. 

?? The stream consumption and production rates for 
each input and output stream. 

?? For each page, the state its state machine has 
reached. 

?? For segments, the memory address causing the 
address fault if the segment has experienced a 
fault. 

?? The number of tokens left unprocessed in the 
stream inputs FIFOs. 

The getCurrentStatus() method reads the array 
status through the hardware API getArrayStatus() call 
(see Section 2.4.4). The array is allowed to continue 
executing while the scheduler interprets these results. 
The raw status is passed to the gatherStatusInfo() stage 
for processing. 

2.3.2.2 Convert and process array status 

The purpose of the gatherStatusInfo() scheduler 
stage is to convert the raw status information from the 
hardware into usable information for the scheduler. 
Raw status is returned in a compact array with each 
element in the array corresponding to a physical CP or 
CMB. The lack of correlation between the dataflow 
representation and the physical status array makes it 
more difficult to utilize the information during 
scheduling. 

It is the responsibility of gatherStatusInfo() to 
traverse the physical status array, look up the mapping 
to the virtual page or segment in the dataflow graph and 
transfer the status to the graph node. 

2.3.2.3 Detect done pages and segments 

As pages and segments complete their execution, a 
built-in mechanism allows these nodes to signal to the 
runtime system that they can be removed. This 
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mechanism is the done signal which is an out-of-band 
(i.e. independent of the stream communication) signal 
to the processor. This signal is part of the status 
returned by the hardware to the scheduler. 

The scheduler subdivides done nodes into two 
types: explicit done nodes and implicit done nodes. 
Once the scheduler receives a done signal from a page 
or segment, that node is marked as a done node and 
scheduled for removal from the array. When a node is 
marked in this manner, it is referred to as an explicit 
done node. 

However, signaling done is not the only way for a 
node to be marked done. A node can also be marked 
done if it no longer has a reason to exist in the dataflow 
graph. For a page, this means that all consumers of its 
outputs have signaled done. Therefore this page can no 
longer affect the final result of the operator. For a 
segment, not only must all of the consumers of its 
output be done, it must also guarantee that it can no 
longer affect the data block associated with the 
segment. This is simple if the segment is read-only. 
However if a segment is write-only or read-write, its 
input nodes must also be done. 

A graph search is performed, starting from the 
explicit done nodes, to find the implicit done nodes. As 
implicit done nodes are discovered, they are added to 
the search list. A node marked done because it is 
logically useless in the dataflow graph is referred to as 
an implicit done node. 

Figure 14 shows an example of how nodes would 
be marked explicit and implicit by the scheduler. All 
nodes in the figure are pages. Assuming node C 
signaled done, node C would be marked as an explicit 
done node. Since it is the only consumer of output 
tokens from node B, node B is logically useless and 
marked as an implicit done node. In turn, node A 
becomes logically useless and is also marked as an 
implicit done node. Node D is not marked as an implicit 
done node because its output tokens are also consumed 
by node E which is not done. Finally, node F does not 
have its output stream tokens consumed by node C and 
is therefore unaffected by node C signaling done. 

All done nodes (explicit or implicit) are placed on a 
done node list which is passed on to later scheduler 
stages. The nodes are removed from their parent 
clusters, operators, and processes. If it is currently 
scheduled, its position on the array is cleared to make 
room for non-done nodes. Its associated data structures 
(i.e. C++ object representation in scheduler memory) 
are cleaned up during the performCleanup() stage (see 
Section 2.3.2.10). 

 
Figure 14 - Example of Explicit and Implicit Done Nodes 

2.3.2.4 Detect address-faulted memory segments 

The SCORE compute model permits user-
instantiated segments to be arbitrarily large. Physically, 
the scheduler realizes this abstraction by loading a 
fixed-size block of data into a CMB and appropriately 
setting the base and bound registers within the CMB to 
accomplish address translation (similar to paged virtual 
memory systems). The base and bound registers also 
serve to notify the scheduler of memory accesses made 
outside of the currently loaded block. In this case, an 
address fault signal is sent to the processor and the 
address causing the fault is recorded. 

In findFaultedMemSeg(), the scheduler examines 
the physical array status to determine which segments 
have experienced address faults. It must determine if: 
(i) this is a genuine address fault caused by memory 
virtualization, or (ii) this is a segmentation fault caused 
by the operator trying to access memory outside of the 
range defined for that segment. If it is a genuine address 
fault, the scheduler determines the next block of data to 
load. If it is a segmentation fault, the operator is 
terminated with an error. 

In the future, it is likely that this functionality will 
be moved to a separate memory management thread. 
This would enable address faults to be serviced without 
the overhead and latency of a full scheduler iteration. In 
this case, it would be beneficial to have a separate path 
available to transfer memory between CMBs and main 
memory to avoid interrupting running nodes on the 
array when performing memory management. 

2.3.2.5 Determine and mark freeable clusters 

When pages and segments become stalled, the 
scheduler must decide which nodes to remove from the 
array to make room for waiting pages and segments. 
This task is performed by the findFreeableClusters() 
stage. In this stage, the scheduler examines the list of 
currently scheduled clusters to determine which clusters 
should be removed from the array. The decision is 
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based on how many nodes in each cluster are stalled 
and cannot make forward progress. There are two 
issues to consider when making this decision: 

?? How does the scheduler determine that a node can 
no longer make forward progress? 

?? How does the scheduler determine when to 
remove a cluster if some of the cluster nodes are 
still able to make forward progress? 

Simply looking at which nodes are currently stalled 
is insufficient. In the course of execution, most nodes 
will be stalled on inputs or outputs some time due to the 
latency inherent in passing tokens through the network. 
Instead, the scheduler applies a heuristic based on the 
number of cycles a node has been stalled. The notion of 
stall threshold is defined as the maximum number of 
cycles a node can be stalled in a timeslice before it is no 
longer considered able to make reasonable forward 
progress. Currently, the stall threshold is set to be one-
half of the timeslice width in cycles. Nodes considered 
unable to make reasonable forward progress are marked 
freeable nodes. 

Once the freeable nodes have been identified, the 
scheduler needs to decide which clusters should be 
removed. This is done by traversing the resident cluster 
list and examining the status of the cluster nodes. If all 
of the nodes of a cluster are marked freeable, the parent 
cluster is marked freeable. 

However, the decision is more difficult if only 
some of the nodes are marked freeable. The reason is 
because the semantics of clusters requires that all of its 
nodes either be atomically scheduled or removed from 
the array. This would mean potentially preempting a 
node which can still make reasonable forward progress. 
This issue is resolved with another heuristic. The notion 
of a cluster freeable ratio is defined as the ratio of nodes 
in a cluster that must be marked freeable before the 
cluster itself is marked freeable. Currently, the cluster 
freeable ratio is set to 0.5, meaning that one-half of the 
nodes in a cluster must be marked freeable before the 
cluster is marked freeable. All clusters marked freeable 
are placed on a freeeable cluster list which is passed on 
to later scheduler stages6. 

                                                           
6 It should be noted that the classification of freeable 
clusters is only a recommendation. There is no 
guarantee that a freeable cluster will be removed during 
this timeslice or clusters not marked as freeable will not 
be removed. 

2.3.2.6 Detect and resolve runtime deadlock 

During the course of execution, it is possible for a 
user’s design to experience deadlock. Deadlock may 
result from an inherent flaw in the dataflow or 
introduced by the scheduler due to physical stream 
constraints. To determine the cause of the deadlock, 
deadlock detection must be performed on the design. 
The method of deadlock detection and resolution is 
described in Section 2.4.3. 

Deadlock detection potentially could be performed 
on every timeslice to immediately detect deadlocked 
designs. However, the heuristic used to perform 
detection is expensive. In most timeslices, there will be 
no deadlock to detect and the detection overhead will 
be wasted. Therefore, the scheduler attempts to wait 
until a design is actually deadlocked before deadlock 
detection is performed. 

The method used by the scheduler is simple. On 
every timeslice, the scheduler looks at the status for 
each resident page and segment to determine if it has 
consumed any inputs or produced any outputs. If a node 
has done neither, it will be marked as non-firing and the 
count of non-firing nodes for that user process is 
incremented. Likewise, if a node does consume inputs 
or produce outputs during a timeslice and it was 
previously marked non-firing, the mark is reset and the 
process count of non-firing nodes is decremented. Once 
a process’s non-firing node count equals the number 
nodes in the process, it is subjected to deadlock 
detection. 

It is still possible for deadlock detection to be 
prematurely run on a process. In this case, all of the 
nodes are reset to firing status and the non-firing node 
count is reset. This situation could occur for various 
reasons, including: the application for this design has 
not injected tokens or the non-firing status marks are 
stale or inaccurate (a node may be firing without 
consuming inputs or producing outputs). 

2.3.2.7 Dynamically schedule clusters 

The scheduleClusters() stage is the heart of the 
SCORE scheduler. It is responsible for determining 
which clusters are actually scheduled and removed 
during the current timeslice. To perform this task, it 
utilizes the done node list and freeable cluster list to 
understand the current state of the array. It then 
proceeds using trial-based scheduling to determine 
which clusters should be removed and scheduled. 

The trial-based scheduling method works in the 
following manner: for each scheduling trial, the 
scheduler performs a scheduling action, such as adding 
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or removing a cluster. After each scheduling action, the 
scheduler calculates the number of physical CPs and 
CMBs that would be free (unoccupied) if no more 
scheduling actions are performed. 

The number of free physical CPs is required to 
remain non-negative. The scheduling trials are halted if 
the speculated number of free physical CPs goes to zero 
or a negative number. However, the speculated number 
of free physical CMBs is allowed to drop below zero. 
The trials are ended when either the speculated number 
of free CPs reaches zero (or would have become 
negative) or no more clusters remain waiting to be 
scheduled. At this point, the scheduler backs up to the 
last trial where the number of free CPs and free CMBs 
are both non-negative. The scheduler must maintain 
enough intermediate information to perform the trial 
rollback. 

Figure 15 shows an example of trial-based 
scheduling. Initially, there are no clusters resident on 
the 4-CP/4-CMB array. Each circle represents a single-
page cluster. Therefore, at the beginning of the trials, 
free CPs equals 4 and free CMBs equals 4. 

The scheduler selects cluster A for scheduling. 
Immediately, we notice that the number of free CMBs 
drops to 0. The reason is because of the speculative 
addition of stitch buffers. Stitch buffers are segments 
added to serve as a token source or token sink when 
only one end of a stream is resident on the array. Stitch 
buffers are realized using FIFO segments. If it is only 
sourcing tokens, it is placed in read-only mode. If it is 
only sinking tokens, it is placed in write-only mode. If 
both the source and sink of the stream become resident 
but tokens still remain in the stitch buffer, it is placed in 
read-write mode. 

In successive trials the number of free CPs 
continues to decrease by 1 while the number of free 
CMBs fluctuates with the choice of clusters scheduled. 
The trials are halted when all of the free CPs have been 
exhausted. At this point, because the number of free 
CMBs is non-negative, no roll back of trials is needed. 

In the current implementation of the scheduler, 
scheduling trials progress in the following order: 

?? Done nodes are removed from the array. 

?? If there are clusters on the waiting list, clusters on 
the freeable cluster list are speculatively removed. 

?? Clusters are repeatedly added to the array 
speculatively using the “frontier” scheduling 

heuristic (see Section 2.4.1) until no more free 
CPs remain7 or no more clusters remain 
unscheduled. 

Once the scheduling trials have been completed 
and the last valid trial has been selected, the scheduler 
updates the internal cluster lists (i.e. waiting cluster list, 
resident cluster list) and appropriately marks each 
cluster, page, and segment with its residency status. 
Stitch buffers are inserted into the dataflow graph 
where appropriate. The outputs generated by the 
scheduleClusters() stage are lists of scheduled pages 
and segments as well as removed pages and segments. 

2.3.2.8 Determine page and segment placement 

After clusters have been scheduled and removed, 
performPlacement() is responsible for assigning the 
exact physical locations for the cluster nodes. In this 
stage, memory management is also performed; the 
memory blocks where page configuration and state as 
well as segment data will exist are assigned. These 
assignments are passed to the 
issueReconfigCommands(). The inputs into the 
performPlacement() stage are the lists of scheduled and 
removed pages and segments from the previous stage, 
scheduleClusters(). 

Before assigning locations to the newly scheduled 
nodes, the scheduler’s array view is updated to reflect 
removed pages and segments. The memory blocks 
containing the configuration, state, and data of the 
removed nodes are marked as cached information 
(except for done nodes, whose associated memory 
blocks are marked as empty). 

The scheduler then examines the lists of scheduled 
pages and segments. To maximize the benefits from 
caching configurations, state, and data in array CMBs, 
the scheduler tries to lock down already cached 
information. The associated memory block is marked as 
used and cannot be evicted. 

After cached information is identified and properly 
protected from eviction, the scheduled pages and 
segments are placed in free CP and CMB locations. 
Currently, there are no restrictions as to where 
individual pages can be placed. Locations for pages are 
randomly selected from a list of free CPs. However, 
there are restrictions associated with where segments 
can be placed. The CMB where a segment is placed 
must also contain a contiguous memory block large 

                                                           
7 As part of the “frontier” scheduling heuristic, clusters 
originally on the freeable cluster list may be 
rescheduled on the array if enough space exists. 
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enough to hold the segment data. Luckily, the current 
memory management scheme guarantees this to be true 
for each free CMB location (more information about 
the memory management scheme is given below). 

 
Figure 15 - Example of trial-based scheduling. Shaded 
indicates speculatively scheduled and dots indicate 
speculative stitch buffers. 

Once all of the pages and segments have been 
placed into free CPs and CMBs, any remaining pages 
that does not have their configuration and state cached 
on the array will have a free memory block allocated. 
No further memory allocation is needed for segments, 

because the CMB location dictates the location of the 
segment data. For pages, the location of its 
configuration and state cache is unimportant8 and 
therefore can be allocated in any free memory block. At 
this time, performPlacement() will arrange for faulted 
memory segments to have the next data section loaded 
from primary memory. 

The memory management scheme used to allocate 
memory blocks is the pseudo-“buddy” system memory 
management. It is a derivative of the “buddy” system 
[KNUTH73]. The pseudo-“buddy” system attempts to 
minimize internal fragmentation while making it easy 
to find free memory blocks of the necessary size. A 
more in-depth discussion of this memory management 
system is in Section 2.4.2. 

The result of the performPlacement() stage is an 
updated arrayCP and arrayCMB physical array view. 
For each element of these arrays, the scheduled entry 
will be appropriately set to the page or segment 
scheduled in that location. It will be the responsibility 
of the issueReconfigCommands() stage to update the 
active entry once reconfiguration is completed. In 
addition the segment block table for each CMB is 
updated with the most recent memory block allocations. 

2.3.2.9 Issue reconfiguration commands 

By the time the issueReconfigCommands() stage is 
reached, the scheduling decisions for the current 
timeslice have been made. It is the responsibility of this 
stage to issue the reconfiguration commands so that the 
physical array reflects the scheduling decisions. This is 
done by stopping execution of the array, issuing 
reconfiguration commands via the hardware API (see 
Section 2.4.4), and then restarting execution of the 
array. Afterwards, arrayCP and arrayCMB are updated 
to reflect the reconfiguration (i.e. the scheduled entry is 
copied to the active entry). 

The first action performed by the stage is to stop all 
execution of CPs and CMBs. The decision to stop the 
entire array stems from the desire to simplify the 
scheduler. This eliminates the need to determine the 
portion of the array that would become affected by 
reconfiguration. Given an array network structure 
where this determination is simple, performing partial 
array halting may be considered. 

After the array has been halted, reconfiguration 
commands are issued to load/dump CMB memory 
blocks, reconfigure CPs/CMBs, and connect 

                                                           
8 It is assumed that the network allow reconfiguration 
of CPs from any CMB on the array. 
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input/output streams. The scheduler attempts to issue 
multiple reconfiguration commands in parallel, as long 
as there are no resource conflicts. The 
batchCommandBegin() and batchCommandEnd() pair 
are used to designate a parallel command set. The 
packing of parallel reconfiguration commands is done 
in a manner similar to scoreboarding [HENNESSY90]. 
As commands for reconfiguration are issued, the CPs 
and CMBs involved are marked occupied. Future 
commands are blocked from being packed in the batch 
if they attempt to utilize a busy resource (i.e. CMB or 
CP). The busy marks are cleared at the completion of a 
batch command. 

Once the array has been reconfigured, the entire 
array is restarted with the new configuration. The 
scheduler will not examine the status again until the 
next timeslice. 

2.3.2.10 Perform cleanup operations 

The final stage of the scheduler is responsible for 
performing garbage collection actions resulting from 
nodes signaling done as well as stitch buffers becoming 
empty. For each done node, performCleanup() looks at 
the parent cluster, operator and process objects. If the 
node is the last remaining member, the appropriate 
parent object will be deleted. For done segments, access 
to the memory region is returned to the user process. 

In addition to done nodes, the stage also deletes 
empty stitch buffer objects no longer needed in the 
dataflow. This is only performed for stitch buffers 
which are removed from the physical array. This 
guarantees that the state and address pointers for the 
stitch buffer are in a known and stable state. 

This stage is not in the critical path of the scheduler 
iteration. While currently inline with the other stages in 
doSchedule(), it may be possible to create a separate 
thread of execution responsible for cleanup. In that 
case, adequate protection of the scheduler data via locks 
needs to be implemented in performCleanup() to 
guarantee nodes are not being deleted at the same time 
they are being accessed. 

2.4 Scheduler Implementation 
Highlights 

The SCORE scheduler contains several 
implementation details which merit more in-depth 
discussion. In the following sections, implementation 
highlights of key areas are described, including: the 
scheduling heuristic, memory management scheme, 
deadlock detection, and simulator interfacing. 

2.4.1 “Frontier” Scheduling Heuristic 
The SCORE scheduler implements a specialized 

version of priority-list scheduling. With traditional 
priority-list scheduling, it is often the case that all 
waiting tasks have equal opportunity to become read to 
run. As a result, all waiting tasks must be examined 
when making a scheduling decision. 

However, given the large overhead of CP 
reconfiguration, SCORE lends itself to applications 
with largely feed forward dataflows. Feed forward 
dataflows allow the compute pages in the design to 
execute for longer periods of time, thereby amortizing 
reconfiguration overhead. Another consequence of feed 
forward dataflows is that ready to run waiting tasks are 
largely isolated to the periphery of the scheduled 
dataflow. The current scheduler implementation 
attempts to take advantage of this fact to optimize 
scheduling time. 

The “frontier” scheduling heuristic separates the 
traditional priority waiting list into a prioritized 
“frontier” cluster list and a waiting cluster list. During a 
normal scheduling iteration, the next cluster to schedule 
is selected from the “frontier” list. The cluster’s 
successor are removed from the waiting list and placed 
on the “frontier” list. Figure 16 shows an example 
dataflow with various elements of “frontier” scheduling 
highlighted. In this example, cluster A is resident on the 
array, therefore placing cluster D on the “frontier” list. 
Cluster B is on the “frontier” list because it was on the 
head list (the head cluster list will be explained below). 
This leaves clusters C and E on the waiting cluster list. 

There are some special cases that need to be 
considered for the heuristic to function correctly: 

?? How does the scheduling heuristic begin 
scheduling when the runtime is initialized? 

?? How does the scheduling heuristic continue 
scheduling once the end of the dataflow is 
reached? 

?? How does the scheduling heuristic handle inter-
cluster feedback loops9? 

When the runtime is started the “frontier” cluster 
list is initialized to be empty. There needs to be a way 
to seed the scheduling heuristic. By maintaining a head 
cluster list from which the “frontier” cluster list is 
loaded when empty, this special case is resolved. 
Membership in the head list is defined to guarantee 
starvation will not occur. 
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Figure 16 - Example of Various Elements of "Frontier" 
Scheduling 

A cluster is placed on the head cluster list if: 

?? It has no input streams, or 

?? It has an input stream originating from the 
processor, or 

?? It has an input stream whose producer has 
signaled done. 

Figure 19 shows that clusters A and B satisfy the 
above criteria for being on the head list. 

Once the heuristic reaches the end of the dataflow, 
there needs to be a way to continue the scheduling 
heuristic. This case is also resolved with the head list. 
When the heuristic reaches the end of the dataflow, 
eventually the frontier list will become empty (unless 
there are inter-cluster feedback loops, which is 
addressed below). At this point, the “frontier” list is 
loaded with the head list and the cycle is started again. 

Unfortunately, the heuristic has an undesirable 
behavior when presented with a design containing inter-
cluster feedback loops9. The potential problem is that 
inter-cluster feedback loops will artificially keep the 
“frontier” list filled, preventing the heuristic cycle from 
restarting at the head list. The result is an oscillating 
state as shown in Figure 17. This figure shows that, 
given an array capable of holding either cluster R or 
cluster S but not both, the system will oscillate between 
cluster R resident and cluster S resident; cluster Q will 
never be scheduled again. This must be handled to 
                                                           
9 Inter-page feedback loops are okay as long as they are 
completely contained within a cluster. Inter-cluster 
feedback loops can result from two situations: (i) 
insufficient physical resources forcing a cluster to be 
decomposed, exposing the feedback loop; (ii) a 
feedback loop spanning multiple operators (i.e. C++ 
compositional operators). 

avoid cluster starvation during scheduling. The current 
implementation avoids this pathological case by 
keeping track of the current “traversal” of the heuristic 
and allowing each cluster to be scheduled only once per 
“traversal”. The traversal count is incremented every 
time the “frontier” cluster list becomes empty and is 
reloaded from the head list. This avoids starvation in all 
dataflow configurations assuming the head list is 
properly maintained. 

2.4.2 Pseudo-“Buddy” System Memory 
Management 

One of the ways to extract the necessary 
performance from the reconfigurable array is by 
caching CP configuration/state/input FIFOs as well as 
CMB data/input FIFOs in array CMBs. This allows 
reconfiguration to, theoretically, be done completely in 
parallel to/from array memory as opposed to serially 
across the CPU/array interface. However, intelligent 
management of CMB memory space is necessary to 
avoid pathologically bad caching that can lead to on-
chip serialization10. 

The ideal memory management strategy is to 
allocate variable-size segments tailored to the size of 
what needs to be cached. This avoids the internal 
fragmentation associated with fixed-size pages. 
However, as caching activity increases, external 
fragmentation increases. Also, the cache management 
overhead is complicated to quickly find a best fit 
segment. 

On the other extreme are a fixed-size pages. Fixed-
size pages avoid the external fragmentation associated 
with variable-size segments. However, the sizes of the 
configuration, state, and input FIFOs and the memory 
segment data differ significantly. This means either a 
large page size or multiple small-pages for caching. 
There is an incentive for keeping memory segment data 
contiguous in CMBs; it is assumed that there is only 
one set of address translation registers in each CMB. 
Unfortunately, a single large page size incurs 
significant internal fragmentation for configuration, 
state and input FIFOs. 

The compromise used by the scheduler is the 
pseudo-“buddy” system. It is derived from the “buddy” 
system [KNUTH73] [KNOWLTON65]. The “buddy” 
system is a memory management scheme that attempts 
to speed up the search for appropriately sized free 
blocks (a problem with variable-sized segments) while 

                                                           
10 One example of on-chip serialization can be shown 
through the example of caching all compute pages in 
one CMB. 
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trying to minimize the amount of internal fragmentation 
(a problem with fix-sized pages). By successively 
dividing the memory space into halves, the “buddy” 
system is able to more tightly fit a free block to the 
data. If a large free block needs to be recovered, the 
smaller blocks to free are easily determined. 

However, the runtime does not need the full 
granularity of the “buddy” system. There are only two 
types of blocks that need to be cached in the CMBs: 
compute page cache and memory segment cache. The 
compute page cache consists of configuration, state and 
input FIFOs. The memory segment cache consists of 
data and input FIFOs. There is no advantage to 
separating the elements associated with the same 
compute page or memory segment (i.e. a single 
compute page cannot load both configuration and state 
in parallel). Memory segment cache blocks will tend to 
be larger than compute page cache blocks due to 
segment data. Therefore, instead of dividing the 
memory space into successive halves, the pseudo-
“buddy” memory system maintains only two levels of 
granularity: LEVEL0 blocks (sized for maximum 
memory segment cache blocks) and LEVEL1 blocks 
(sized for maximum compute page cache blocks). (See 
Figure 18) 

The memory space is initially divided into full 
LEVEL0 blocks. Any leftover space is marked as 
“cruft” and is unused by memory segment cache 
blocks. Each LEVEL0 block can be further subdivided 
into LEVEL1 blocks with unused space marked as 
LEVEL1 “cruft”. In Figure 18 (“Possible Allocations”), 
there is an example of how an array CMB is allocated 
at either LEVEL0 and LEVEL1. 

Each LEVEL0 or LEVEL1 block can be in one of 
four states: (i) free, (ii) unavailable, (iii) used, or (iv) 
cached. All LEVEL0 blocks are initially marked free 
with the corresponding LEVEL1 blocks marked 
unavailable. Any remaining LEVEL1 blocks are 
marked free.  

 
Figure 17 - Example of Inter-Cluster Feedback Loop 

 
Figure 18 - Allocation of CMB Memory Blocks in Pseudo-
“Buddy” System 

The free state indicates that a block is currently not 
occupied and may be allocated. The unavailable state 
indicates that a block is currently occupied by another 
level (i.e. an unavailable LEVEL0 block indicates it is 
currently subdivided into LEVEL1 blocks; an 
unavailable LEVEL1 block indicates that is currently 
merged into a LEVEL0 block). The used state indicates 
that a block is currently occupied and the owner 
(compute page or memory segment) is currently 
scheduled on the array; used blocks cannot be pre-
empted. The cached state indicates that a block is 
currently occupied but the owner is currently not 
scheduled; cached blocks can be reallocated as long as 
dirty blocks are swapped out first. 

An example of how blocks are initialized can be 
seen in Figure 18 (“Initial State”). Each array CMB 
contains a segment table object used to keep track of 
which LEVEL0/1 blocks are currently free, unavailable, 
used, or cached. In addition to the various block lists, 
each segment table contains a map of the locations for 
the blocks in the CMB. 

When a memory segment is scheduled on the array, 
a block is allocated in the same CMB. The scheduler 
first looks for a free LEVEL0 block; if there are no free 
LEVEL0 blocks, a cached LEVEL0 block is chosen 
and evicted from the CMB. The runtime guarantees that 
there is at least one free or cached LEVEL0 block in 
each CMB. No LEVEL1 blocks are ever evicted when 
allocating LEVEL0 blocks. 

When a compute page is scheduled on the array, a 
similar process occurs. However, the block can be 
allocated in any CMB on the array. It is assumed that 
the routing network on the array supports configuration 
of a CP from any arbitrary CMB. The runtime 
randomly picks a CMB on the array11 and looks for a 
free LEVEL1 block; if there are no free LEVEL1 
blocks, but there are cached LEVEL1 blocks, a cached 
LEVEL1 block is chosen and evicted from the CMB. 
                                                           
11 By randomly choosing the CMB, the location of the 
compute page configurations is evenly spread out, 
allowing for more parallelism in reconfiguration. 
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However, unlike LEVEL0 blocks, a CMB is not 
guaranteed to have a free or cached LEVEL1 block. 
Therefore, the runtime continues to search for a free or 
cached LEVEL1 block until it succeeds or all CMBs 
are exhausted. In the course of allocating a free or 
cached LEVEL1 block, the runtime system will also 
attempt to subdivide free or cached LEVEL0 blocks to 
obtain the necessary LEVEL1 blocks. 

When a compute page or memory segment is 
scheduled on the array, the corresponding cached block 
is marked used to prevent it from being evicted. Once 
removed, a page’s or segment’s corresponding cached 
block is marked cached, allowing it to be evicted if 
necessary. 

The final condition to consider is when a page or 
segment signals done. When a memory segment is 
done, its LEVEL0 block is marked free and returned to 
the free LEVEL0 list. When a compute page is done, its 
LEVEL1 block is also marked free and returned to the 
free LEVEL1 list. However, as a policy, the pseudo-
“buddy” memory system attempts to maintain a given 
block of memory as a larger LEVEL0 block instead of 
the smaller LEVEL1 blocks. Therefore, whenever a 
LEVEL1 block is freed, the runtime system attempts to 
consolidate it into a LEVEL0 block. 

2.4.3 Deadlock Detection & Bufferlock 
Detection/Resolution 

To avoid artificially deadlocking the user’s design, 
the scheduler must occasionally perform bufferlock 
detection and resolution. Bufferlock is a restricted form 
of deadlock that is caused by the limited token buffer 
space in the stream links connecting pages and 
segments. Bufferlock can be introduced by the runtime 
during the mapping of the abstract dataflow, where 
stream buffering is assumed to be unlimited, to the 
physical hardware, where real limits exist. 

The scheduler performs deadlock and bufferlock 
detection by discovering producer-consumer 
dependency cycles. The scheduler starts by constructing 
the current producer-consumer dependency graph. 
Figure 19 shows an example of a design dataflow and 
its corresponding dependency graph. The solid edges 
indicate the token stream connections. The dashed 
edges indicate the dependency edges. Each node is 
annotated with dots on its input/output ports: a dot on 
an input port indicates the node is consuming from that 
input stream, a dot on an output port indicates that the 
node is producing to that output stream. The streams are 
annotated with their empty or full status. 

 
Figure 19 - Example of Dependency Cycle in Bufferlock 
Detection 

The nodes of the dependency graph consist of the 
nodes of the dataflow (i.e. pages and segments). A fake 
processor node is inserted which consumes from all 
streams read by the processor and produces to all 
streams written to by the processor. In the dependency 
graph, a dependency edge exists between two nodes if 

?? A node is trying to produce tokens to a full output 
stream (i.e. in Figure 19, A-to-B and B-to-D); in 
this case, the edge starts from the producer node 
and ends at the consumer node, or 

?? A node is trying to consume tokens from an empty 
input stream (i.e. in Figure 19, D-to-C and C-to-
A); in this case, the edge starts from the consumer 
node and ends at the producer node. 

Once the producer-consumer dependency graph is 
constructed, a cycle discovery algorithm is used to 
return any cycles that exist, including the streams that 
make up each cycle. The current implementation uses a 
modified version of depth-first-search (DFS). The 
advantage of using depth-first-search is the linear 
complexity on the number of nodes and edges. The 
disadvantage of using DFS is that not all bufferlock 
stream cycles may be detected in one pass. It may 
require more than one timeslice to detect all bufferlock 
cycles. However, this is an acceptable compromise 
since a more exhaustive search would be exponential in 
complexity. 

The result of cycle discovery is a list of cycles 
complete with component streams. The bufferlock 
detection code attempts to remove duplicate entries, as 
well as any cycles that cross the fake processor node12. 
Inherent deadlock cycles in the user’s design can also 
be detected by searching for dependency cycles 
consisting of purely empty streams. Detected deadlock 

                                                           
12 The scheduler currently does not know which streams 
the processor is reading from or writing to. In the 
future, the scheduler may be able to properly detect 
processor stream reads and writes. 
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cycles are passed to deadlock resolution. Any 
remaining cycles are passed to bufferlock resolution. 

Bufferlock resolution attempts to insert stitch 
buffers to break bufferlock dependency cycles. Given a 
list of bufferlock cycles, it simply takes the first full 
stream of each cycle and inserts a stitch buffer. If the 
producer and consumer nodes of the selected stream are 
resident on the array, bufferlock resolution attempts to 
schedule the newly added stitch buffers onto the array. 

Deadlock resolution is simple. Once an inherent 
deadlock is detected at runtime, the only solution 
available is to terminate the user design. To guard 
against deadlocks detected using stale data, the current 
implementation includes hysterisis to prevent false 
positives. A design must test positive for deadlock 
twice in a row before the design is terminated. 

2.4.4 Simulator Interface 
All reconfiguration is performed through a 

hardware API. The hardware API includes all of the 
commands necessary to load/dump CPs and CMBs, 
transfer blocks of memory, and start/stop the array. The 
current implementation of the API consists of the 
following commands: 

?? getArrayInfo() 
Returns the current hardware configuration (i.e. 
array size and CMB size). 

?? getArrayStatus() 
Returns the current CP/CMB status of 
pages/segments (i.e. stalled pages, done pages, 
etc.) 

?? startPage()/stopPage() 
Starts or stops the indicated CP. 

?? startSegment()/stopSegment() 
Starts or stops the indicated CMB. 

?? loadPageConfig() 
Loads a configuration for a CP from a given 
CMB. 

?? loadPageState()/dumpPageState() 
Loads or dumps the state for a CP from/to a given 
CMB. 

?? loadPageFIFO()/dumpPageFIFO() 
Loads or dumps the input FIFOs for a CP from/to 
a given CMB. 

?? setSegmentConfigPointers()/getSegmentPointers() 
Sets or retrieves the mode, status and address 
pointer registers for a CMB13. 

                                                           
13 There are also several specialized API calls for 
modifying individual registers such as 

?? loadSegmentFIFO()/dumpSegmentFIFO() 
Loads or dumps the state for a CMB from/to a 
given CMB. 

?? memXferPrimToCMB()/memXferCMBToPrim() 
Transfers a block of memory between a CMB and 
primary CPU memory. 

?? memXferCMBToCMB() 
Transfers a block of memory between two CMBs. 

?? connectStream() 
Connects the output port and input port of two 
CPs/CMBs via the array routing network. 

All reconfiguration commands are issued in 
batches. Batches are designated with a 
batchCommandBegin() … batchCommandEnd() pair. 
Commands within the same batch are issued effectively 
in parallel14. It is the responsibility of the issuer (i.e. 
scheduler) to guarantee that commands within a batch 
do not have resource conflicts, such as loading the 
configuration and state for the same CP. The 
batchCommandEnd() will use simple scoreboarding to 
check for resource usage violations. 

The purpose of this extra layer of abstraction is to 
ease future migration to physical hardware, as well as 
make the scheduler implementation less susceptible to 
array design changes. The actual implementation of the 
array is black-boxed from the scheduler. 

                                                                                           
changeSegmentMode(), 
changeSegmentTRAandPBOandMAX(), and 
resetSegmentDoneFlag(). 
14 In reality, batched commands are issued with a one 
clock cycle offset because it is assumed only one 
command can be issued per cycle. 
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3 Results 
Several applications were developed using the 

SCORE compute model. They are used to benchmark 
the scheduler effectiveness and demonstrate scheduler 
functionality. The applications that are mapped include: 
wavelet encoder, wavelet decoder, and JPEG encoder. 

Basic performance scaling experiments were 
performed where the number of CPs is varied to 
observe the effect on application makespan15. In 
addition, runtime cost measurements were preformed to 
better understand future areas for optimization. 

3.1 Application Overview 
 
3.1.1 Wavelet Encoder/Decoder 

The discrete wavelet transform used in the wavelet 
image encoder/decoder is a recursive operation. An 
image is first decomposed into low frequency and high 
frequency components. The decomposition is repeated 
on the low frequency component.  The recursion goes 
on for as much iteration as is mandated by the 
compression algorithm. In our particular algorithm, this 
recursion is finite and known statically. 

Mathematically, each decomposition passes each 
line of original data through a high-pass filter and a 
low-pass filter in parallel and down-samples the output 
streams of each filter by a factor of two. The total 
number of samples is preserved. One iteration in the 
above recursion consists of a horizontal decomposition 
followed by a vertical composition. Afterwards, the 
original dataset is split into four smaller datasets.  The 
compression algorithm used performs three recursive 
iterations, discarding high frequency data from the first 
recursion.  (see Figure 20). 

 
Figure 20 - Wavelet Encoder Dataflow 

                                                           
15 Makespan is the number of cycles it takes to execute 
an application to completion. 

The outputs of the discrete wavelet transform are 
scalar quantized.  Quantization coefficients are 
compacted using zero-length encoding in all but the 
lowest frequency output where runs of zeroes are not 
expected.  Finally, run lengths and levels are Huffman-
coded into output bit-streams. In wavelet decoder, the 
above process is reversed, starting with the outputs 
from the Huffman-coders. 

3.1.2 JPEG Encoder 
JPEG encoder mathematically decomposes the 

input data into high and low frequency components. 
The image is first segmented into 8x8 pixel blocks. The 
decomposition is performed on every individual block 
via the DCT (Discrete Cosine Transform), a unitary 
transform that takes the pixel block as an input and 
returns another 8x8 block of coefficients, most of which 
are close to zero. The coefficients are scalar quantized 
and scanned into a one-dimensional stream via a zigzag 
scan. Quantized coefficients are compacted with zero-
length encoding, after which runs and lengths are 
Huffman encoded (see Figure 21). 

3.2 Performance Scaling 
For these experiments, we assume a single-chip 

system as described in Section 1.1.2. Table 1 
summarizes the parameters we assume for the system 
during the experiments. No limitations on routability 
among pages are currently modeled. 

The processor code (i.e. user process, IPC thread, 
and scheduler thread) is executing natively on a 
Pentium III microprocessor running at 500 MHz with 
512 Mbyte of memory. The reconfigurable array is 
simulated by the simulator thread on a second Pentium 
III microprocessor running in parallel at 500 MHz. The 
simulator accounts for all time required to reconfigure 
pages, store state, and transfer data between memories 
in the chip. Scheduling overhead is assumed to be 
50,000 cycles and is overlapped with array execution. 
This allows the performance of the scheduling heuristic 
to be measured independent of the scheduler 
implementation. Section 3.3 contains measurements of 
the actual scheduler cost gathered from various runs. 

All three mapped applications are run on a series of 
architecture-compatible SCORE systems with a varying 
number of CPs among the systems. The ratio between 
the number of CPs and CMBs is kept at 1:1 when 
possible. At the data points where this is not possible 
(because the number of I/Os from a single page is too 
great) the number of CMBs is held at the minimum 
possible; additionally, a dashed line is used in the 
graph. 
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Figure 21 - JPEG Encoder Dataflow 

Figure 22 shows the effect on wavelet encoder 
makespan as array size is varied from 1 to 30 CPs. The 
application is fully spatial at 30 CPs. 

In general, makespan decreases monotonically with 
increases in the array size. The few instances violating 
monotonicity are believed to be artifacts of local 
scheduling decisions. 

The performance curve is shallower between 15 
CPs and 30 CPs than between 1 CP and 15 CPs. This is 
caused by CP under-utilization from the horizontal and 
vertical transform stages (see Figure 20). Each stage 
accepts an input token stream at rate of N and outputs 
two output token streams, each at a rate of N/2. This 
reduction in token stream rate propagates to subsequent 
stages so that in the longest path, the rate is reduced to 
N/32. Between 15 CPs and 30 CPs, the scheduling 
overhead and reconfiguration cost is offset by increased 
CP utilization (through time multiplexing). As the 
number of CPs is reduced further, the physical CPs  
become fully utilized and scheduling overhead begins 
to adversely affect the total makespan. In addition, 
because the number of CMBs also shrinks, the design 
becomes CMB bound. This accounts for the steeper 
performance curve as array size approaches 1 CP. 

 
Figure 22 - Wavelet Encoder: Makespan vs. Array Size 
(64-LUT CPs) 

Simulator Parameters Value Assumed 
Reconfiguration Time 5,000 cycles 
Scheduler Timeslice 250,000 cycles 
CP Size 64/512-LUTs 
CMB Size 2 Mbits 
External Memory Bandwidth 2 GBytes/s 

Table 1 - System Parameters for Experiments 

Three points can be derived from this graph: 

?? The scheduler is able to automatically schedule a 
SCORE application onto less hardware while 
maintaining a reasonable area-time curve (CP-
makespan); 

?? Not all CPs may be fully utilized in a fully spatial 
implementation of a design; 

?? The scheduler is able to automatically exploit CP 
under-utlization and effectively time-multiplex the 
design on to reduced hardware. 

Figure 23 shows the effect on wavelet decoder 
makespan as array size is varied from 1 to 27 CPs. The 
application is fully spatial at 27 CPs. Since wavelet 
decoder is similar to wavelet encoder, its performance 
graph exhibits some of the same features as wavelet 
encoder. 

As with wavelet encoder, the performance graph 
for wavelet decoder is shallower between 15 CPs and 
27 CPs due to CP under-utilization. The non-
monotonicity between 5 CPs and 15 CPs is more 
pronounced in wavelet decoding, but follows the same 
general increases due to scheduling overhead and CMB 
bounds. 

 
Figure 23 - Wavelet Decoder: Makespan vs. Array Size 
(64-LUT CPs) 
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Figure 24 shows the effect on JPEG encoder 
makespan as array size is varied from 1 to 13 CPs. The 
JPEG encoder implementation is different from the 
wavelet encoder/decoder because it is implemented 
using 512-LUT CPs versus 64-LUT CPs. Another 
difference with JPEG encoder is that its pages require a 
large number of I/O streams. The largest number of 
streams a page requires is 16. This is larger than the 
number of pages in the design, making it impossible to 
maintain a 1:1 CP-to-CMB ratio (see Section 4.4 for 
future work that may alleviate this problem). Therefore, 
all JPEG encoder performance numbers reflect a 
constant array CMB count of 16. 

As with wavelet encoder/decoder, the performance 
graph for JPEG encoder is largely decreases 
monotonically as the array size increases. However, it 
does not experience the shallower performance curve 
when nearly fully spatial. In fact, as seen in Figure 24, 
JPEG encoder experiences significant performance 
degradation immediately upon becoming non-fully 
spatial. The large number of I/O streams incident to 
certain pages causes a large number of CMBs to be 
consumed. Therefore, JPEG encoder becomes CMB 
bound much earlier than either wavelet encoder or 
decoder. 

3.3 Scheduler Runtime Cost Analysis 
Empirical measurements were done of the 

scheduler runtime cost to better understand the 
overhead of automatic scheduling for reconfigurable 
devices. In these measurements, per timeslice 
scheduling cost is broken down into individual 
scheduling stages (see Section 2.3.2). 

 
Figure 24 - JPEG Encoder: Makespan vs. Array Size (512-
LUT CPs) 

 
 

getArrayStatus(), issueReconfigCommands(), and 
performCleanup() are omitted in the measurements. 
getArrayStatus() and issueReconfigCommands() are 
omitted because they consist largely of hardware API 
calls. These calls do not contribute meaningfully to the 
scheduler decision. performCleanup() is omitted since 
it is not part of the scheduler timeslice critical path. 

Measurements are performed using each of the 
three mapped application to discover the effect of 
design dataflow on the runtime cost. The measurements 
are run on the same series of architecture-compatible 
SCORE systems with a varying number of CPs among 
the systems. 

The SCORE runtime executable is compiled using 
–O3 compiler optimizations. The measurements are 
obtained using the “x86 Performance-Monitoring 
Counters for Linux”16 library. This library utilizes 
performance counters in Intel Pentium microprocessors 
and measures the number of clock cycles taken for a 
particular section of code. Overhead caused by 
instruction and data cache misses are included in this 
measurement. 

Figure 25 shows the breakdown of scheduler 
runtime cost as a function of array size when running 
the wavelet encoder application. The scheduler cost per 
timeslice ranges from about 60,000 cycles to 260,000 
cycles. The three major contributors appear to be 
gatherStatusInfo(), schedulerClusters(), and 
performPlacement(). 

In general, scheduleClusters() consumes at least 
half of the scheduler overhead. The only time this is not 
true is when the design is fully spatial. The current 
scheduler implementation does not special case a fully 
spatial implementation. Therefore, time is still spent 
discovering that no rescheduling needs to be performed. 

An examination of Figure 25 suggests that a less 
complex scheduling heuristic needs to be investigated. 
This would reduce the cost contributed by 
scheduleClusters(). One possible candidate is static 
scheduling (see Section 4.3), which may reduce 
overhead in several stages, including 
gatherStatusInfo(), findFreeableClusters(), and 
scheduleClusters(). 

An important issue to note is that the scheduling 
overhead increases almost monotonically with increases 
in array size. Since the scheduler is required to fill more 
physical CPs and CMBs, this increase is expected. 
However, this increase is sub-linear with the number of 
                                                           
16 http://www.csd.uu.se/~mikpe/linux/ 
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physical CPs. This may be evidence that the timeslice-
scheduling model is valid for reconfigurable devices. 
Making batch scheduling decisions at timeslice 
boundaries has many advantages, including amortizing 
the overhead of status gathering and context switching. 
In addition, batch scheduling offers the potential 
opportunity to reduce stitch buffering. 

Figure 26 shows a similar breakdown of scheduler 
runtime cost when running the wavelet decoder 
application. Since the two applications are similar in 
overall design, their effects on runtime cost are similar. 
The main difference that exists is the absence of the 
dealWithDeadLock() stage through much of the wavelet 
decoder run. Unlike wavelet encoder, wavelet decoder 
does not contain streams susceptible to physical stream 
buffer limitations. The occurrence of deadlock 
detection/resolution between 9 CPs and 19 CPs is most 
likely the result of stale array status causing premature 
deadlock detection. 

Finally, Figure 27 shows the breakdown of 
scheduler runtime cost when running the JPEG encoder 
application. Unlike wavelet encoder and decoder, JPEG 
encoder has relatively few pages to schedule. 
Therefore, one would expect scheduleClusters() to 
consume less time. However, from the figure, overall 
scheduling time has increased. 

The reason for this increase is a result of the 
“frontier” scheduling heuristic (see Section 2.4.1) The 
“frontier” scheduling heuristic is similar to a breadth-
first-search and is linear on the number of nodes and 
edges in the graph. JPEG encoder contains pages with 
as many as 16 I/O streams incident. Wavelet encoder 
and decoder pages have a maximum of 6 to 7 I/O 
streams incident. This increase in I/O streams in the 
cause for increased scheduleClusters() cost. 

 
Figure 25 - Breakdown of Per Timeslice Scheduler Cost 
(Wavelet Encoder Execution) 

 
Figure 26 - Breakdown of Per Timeslice Scheduler Cost 
(Wavelet Decoder Execution) 

 
Figure 27 - Breakdown of Per Timeslice Scheduler Cost 
(JPEG Encoder Execution) 
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4 Future Work 
In the process of designing and implementing the 

SCORE scheduler, several areas for future work have 
been identified. The areas of future work range from 
optimizing scheduling time and result quality to 
fairness guarantees for multiple simultaneous designs. 

4.1 Expandable Stitch Buffers 
Stitch buffers are added into the design dataflow to 

retime data tokens between non-coresident pages and 
segments. They are also used to resolve bufferlock 
introduced by finite physical stream buffering. The 
current implementation allows for at most one stitch 
buffer between pages and segments. Additionally, the 
size of individual stitch buffers is fixed and must fit 
completely within a single CMB. 

Ideally, we would like the size of a stitch buffer to 
be expandable at runtime. One method of providing this 
is by chaining together fixed-size stitch buffer. Figure 
28 shows an example of an expandable stitch buffer 
implemented as a chain of fixed size stitch buffers. 

The expandable stitch buffer has been expanded to 
a size of 10 Mbits while the physical CMB size is 2 
Mbits. The expandable stitch buffer starts out as a 
single 2 Mbit fixed-size stitch buffer (0-2 Mbit) 
simultaneously read from by page 1 and written to by 
page 0. As the expandable stitch buffer becomes full, 
the scheduler creates another 2 Mbit fixed size stitch 
buffer (2-4 Mbit). Page 1 continues to read from (0-2 
Mbit) while page 0’s output stream is rerouted to write 
to (2-4 Mbit). (0-2 Mbit) and (2-4 Mbit) are not 
connected directly together and function strictly as 
sequential read-only and sequential write-only 
segments, respectively. 

As the expandable stitch buffer becomes filled 
again, additional 2 Mbit fixed-size stitch buffers are 
created and added to the chain as shown in Figure 28. 
Only the head and the tail of the stitch buffer chain are 
read from or written to. The intermediate fixed-size 
stitch buffers are not resident on the array. The chain is 
collapsed as the head stitch buffer (i.e. (0-2 Mbit)) is 
completely drained. The next stitch buffer then become 
the head of the chain (i.e. (2-4 Mbit)). 

4.2 Quantized Priority “Frontier” 
Cluster List 

From section 2.4.1, we see that the “frontier” 
cluster list is managed as a priority list. The current 
“frontier” cluster list is implemented as a binary heap 
[CORMEN96]. The result is an insertion time of 

O(log(N)), N being the number of clusters scheduled in 
the system. 

However, the level of granularity offered by a full 
heap implementation may not be necessary. An 
alternate implementation is a quantized priority list. 
Arbitrary quantization levels are defined (i.e. low, 
medium, high) and assigned a priority subrange (i.e. 
low = 0 to 85000, medium = 85001 to 175000, high = 
175001 to 250000). The quantized priority list is 
implemented as an array of cluster linked lists. The size 
of the array is defined as the number of priority levels. 
Within each level, the clusters in the linked lists are 
unordered. Figure 29 is an example of the quantized 
priority list described. Clusters A, B, C, D, E, and F are 
shown to be organized in the three-level priority list 
with high, medium, and low priorities. 

The advantage of a quantized priority “frontier” 
cluster list an insertion time of O(1). Once the raw 
priority of a cluster is determined, a simple comparison 
yields the quantization level for the cluster. The new 
cluster is simply appended to the end of the appropriate 
list. When the scheduler wishes to remove a cluster 
with the highest priority, it simply finds a priority level 
with a non-empty cluster list and removes the head of 
the list. 

4.3 Static Scheduling in SCORE 
In the current scheduler implementation, 

scheduling decisions are dynamically made at runtime 
based on runtime statistics gathered from the array. 
Dynamic scheduling decisions allow the SCORE 
scheduler to cope with dataflow with data-dependent 
data rates or dynamically constructed dataflows. 
However, there are situations where some or all of the 
dataflow data rate is static. It would be desirable to pre-
compute the scheduling order in this situation. In 
particular, following a pre-computed scheduling 
“recipe” would reduce scheduling runtime. 

 
Figure 28 - Example of Expandable Stitch Buffer 
Implementation 
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Figure 29 - Example of Quantized Priority "Frontier" 
Cluster List Implementation 

However, two questions remain: 

?? When should the static schedule be calculated? 

?? What should the static schedule specify? 

The concern is that, in a general SCORE 
environment, two potentially unknown variables can 
affect static scheduling: (i) varying array size, and (ii) 
multiple SCORE designs executing simultaneously. If 
the static schedule is calculated at compile time and 
specifies exactly when each page and segment should 
be scheduled along with any necessary stitch buffers, 
the schedule cannot cope with array size variations or 
interference from other user designs. 

If, instead, the scheduler calculates the static schedule 
at operator instantiation time, the schedule can cope 
with array size. However, an overhead is incurred at 
each operator instantiation. Both solutions cannot cope 
with interference from other design running 
simultaneously on the array. In addition, the above 
solutions cannot take advantage of dataflow graphs 
where a subset of the dataflow is static data rate. 
Figure 30 shows an example of a dataflow where 
subsets of the dataflow, such as (A, B, C) and (F, G), 
are internally static data rate, while the entire dataflow 
is dynamic data rate. 

 
Figure 30 - Example of Subsets of Nodes Marked as Static 
Rate Dataflow 

 

Therefore, a general static scheduling solution 
cannot depend on the knowing the available compute 
resources on the array. While an optimal solution 
cannot be guaranteed, this means that no restrictions are 
placed on the SCORE compute model. A possible 
compromise solution is to have the static schedule only 
specify the relative ordering of the pages and segments 
within each scheduling subset. For example, in Figure 
30, a static schedule for (A, B, C) might specify that the 
order of scheduling is (i) A, (ii) B, (iii) C. Each static 
scheduling subset is then collapsed into a single black-
boxed node when performing dynamic scheduling. 
Whenever the dynamic scheduler determines it will 
schedule one of the black-boxed static subsets, the pre-
computed schedule is used. 

Some issues that need to be considered include: 

?? How will the dynamic scheduler view the black-
boxed static subsets? (i.e. how many array 
resources will it be viewed as consuming?) 

?? Once a black-boxed static subset is encountered, 
how will the precomputed schedule be interleaved 
with the general dynamic schedule? 

These issues are not addressed in this report. Their 
resolution will be a part of any future static-dynamic 
SCORE scheduler. 

4.4 Min-edge-cut Clustering 
Currently, the SCORE scheduler uses the cluster 

abstraction to deal with the pathological case of 
feedback loops in the dataflow. This is handled in 
addOperator() where nodes of a feedback loop are 
placed within a cluster to guarantee coscheduling (see 
Section 2.3.1.1). 

Another potential use of clustering is to reduce 
runtime CMB usage. For example, in Figure 31 the top 
dataflow shows a subset of a larger dataflow. This 
subset is purely feed-forward. Using the current 
clustering mechanism, each node is placed within its 
own cluster. However, this results in a large number of 
streams between clusters 1 and 2. If cluster 1 and 
cluster 2 in the top dataflow become non-coresident, the 
stitch buffering between cluster 1 and 2 would consume 
three CMBs on the array. If the array contains few 
CMBs, the design would quickly become CMB bound. 
This suggests that cluster 1 and 2 should always be 
coscheduled. The easiest way to achieve this is to 
guarantee that node B and C reside in the same cluster 
(see Figure 31 bottom dataflow). 
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Figure 31 - Example of Possible Min-edge-cut Clustering 

To implement this method of clustering, an 
algorithm based on network flow techniques can be 
employed. Max-flow min-cut algorithms exist that find 
a min-cut bipartition in polynomial time ([EVEN79] 
[FORD62] [HU85] [LAWLER76]). In [YANG94], 
Yang and Wong propose a balanced bipartition 
heuristic based on repeated max-flow min-cut 
techniques. By applying these max-flow methods, a 
SCORE operator could be partitioned into clusters with 
a minimum number of I/O streams. 

4.5 Process Fairness Guarantees 
The current scheduler implementation includes a 

one-level priority scheme. Priorities are calculated for 
each cluster and the clusters are sorted using a binary 
heap. This heuristic works well when there is only one 
SCORE application running. 

However, when multiple SCORE applications are 
executing simultaneously, a one-level priority scheme 
does not guarantee fairness among the processes. While 
each process will eventually execute to completion (i.e. 
no process will starve), a process with a large number 
of pages or segments can monopolize array resources. 
The current scheme makes no attempt to prioritize 
clusters based on the parent process. 

There are various methods for approaching this 
problem. As the number of application increases, the 
desired behavior is for the performance of each 
application to degrade by an equal amount. One method 
for achieving this is to time multiplex the array among 
the processes. Given N applications, an allocation cycle 
of N slots is defined. Each application is assigned one 
slot. During its assigned slot, an application has 
complete access to the array. Each slot is one or more 
timeslices in duration. The “frontier” scheduling 
heuristic may still be used. Each process would contain 
its own “frontier” cluster list that is consulted during its 
assigned time slot. The disadvantage of this method is 
that a process with little or no work to perform still 
occupies an equal slot as active processes. 

An alternative to strict time multiplexing of the 
array is a modified cluster priority scheme. The current 
cluster priority can be augmented with process priority. 
The process priority scheme can be one of various 
scheduling techniques, such as lottery scheduling 
[WALDSPURGER94]. The exact method for providing 
process fairness in SCORE remains to be determined in 
future implementations. 
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5 Conclusion 
We have presented an implementation of a 

dynamic runtime array scheduler for the SCORE 
compute model. Work presented indicates that dynamic 
scheduling of designs onto varying-size reconfigurable 
hardware is possible. In addition, the scheduler is able 
to time-multiplex designs onto reduced hardware and 
still achieve acceptable area-time curves by 
automatically exploiting resource under-utilization (i.e. 
wavelet encoder and decoder). Through scheduler cost 
analysis, we have found that the current implementation 
does not yet meet the 50,000 cycle overhead goal. 
However, several ideas have been discussed that may 
help reduce the overhead, including: static scheduling 
for subset dataflows and priority list quantization. 
Overall, this project is successful in its goal to show 
that dynamic and automatic scheduling of designs onto 
reconfigurable hardware is indeed possible using the 
SCORE compute model. The current implementation 
serves as an important framework for future scheduler 
development in SCORE. 
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6 Appendix – Scheduler 
Data 

The SCORE scheduler uses several specialized 
data types and structures to organize user designs and 
maintain the scheduler’s task lists. In this section, we 
describe the most important and common data types as 
well as the key data structures used by the scheduler. 

6.1 Data Types 
The user’s design is maintained in a hierarchy of 

C++ objects. The hierarchy levels include: 
ScoreProcess, ScoreOperatorInstance, ScoreCluster, 
ScoreGraphNode and ScoreStream. At the highest 
level, a ScoreProcess is directly mapped to a user 
SCORE application. At the lowest level, a 
ScoreGraphNode and ScoreStream are the dataflow 
graph nodes and edges. The details of each data type 
are described in this section. 

ScoreProcess resides at the highest level of the 
design hierarchy. An instantiation of ScoreProcess is 
created every time a new SCORE application is linked 
to the runtime. The scheduler maintains a list of 
ScoreProcess objects indexed process ID. All 
instantiated operators, clusters, pages, and segments for 
a particular process are reachable by traversing 
ScoreProcess data structures. During the normal course 
of scheduling, the ScoreProcess list is not accessed. 
However, this list is important during deadlock 
detection/resolution (see Section 2.4.3), which is 
performed on an entire process at a time. In the future, 
the process list may be used to provide fairness and 
performance guarantees among multiple SCORE 
applications. 

6.1.1 ScoreProcess 

Figure 32 shows the important elements of the 
ScoreProcess data type. As the top level of the 
hierarchy, it contains lists of all components of an 
application, including instantiated operators, clusters, 
nodes, and streams. It also contains lists of streams that 
are written to or read from by the processor. Each of the 
instantiated operators, clusters, and nodes have a parent 
ScoreProcess pointer pointing back to this data 
structure. 

In addition to the component and stream lists, 
ScoreProcess also stores the process ID of the SCORE 
application. In the event the user decides to instantiate 
the design using separate operators, this allows the 
scheduler to match operators with an existing SCORE 
process. Finally, ScoreProcess contains a count of the 
number of pages and segments as well as the number of 

non-firing pages and segments since the last timeslice. 
These variables are used to determine when to run 
deadlock detection (see Section 2.4.3). 

 
Figure 32 - Diagram of ScoreProcess Data Type 

6.1.2 ScoreOperatorInstance 

The ScoreOperatorInstance is the instantiated data 
type of a user operator. It contains sufficient 
information for the IPC thread to accurately reconstruct 
the dataflow of the operator. ScoreOperatorInstance 
objects are only accessed during operator instantiation 
and operator cleanup in the performCleanup() stage 
(see Section 2.3.2.10). 

Figure 33 shows that the ScoreOperatorInstance 
data type contains lists of the pages and segments 
making up the operator. The “pages” and “segments” 
variables indicate the number of pages and segments in 
the individual lists. Finally, a pointer exists to reference 
back to the parent ScoreProcess once the parent process 
has been identified. 

 
Figure 33 - Diagram of ScoreOperatorInstance Data Type 

6.1.3 ScoreGraphNode 

The ScoreGraphNode data type is the base class for 
ScorePage (see Section 6.1.4) and ScoreSegment (see 
Section 6.1.5). It contains the necessary variables and 
lists to link the node into the dataflow as well as the 
design hierarchy. In addition, it also provides a place to 
store status information concerning the node. 

Figure 34 shows the important variables in the 
ScoreGraphNode data type. It contains a list of the 
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node’s input and output streams as well as pointers to 
the parent ScoreProcess, parent ScoreOperatorInstance, 
and parent ScoreCluster (see Section 6.1.8). The exact 
number of input and output streams is indicated in the 
“inputs” and “outputs” variables. Variables also exist to 
store node status, such as: if the node has signaled done, 
if the node is resident, and if the node is being 
scheduled on the array. If the node is resident, its 
location on the array is stored in residentLoc. Finally, 
didNotFireLastResident is set if the node did not 
consume or produce tokens during the last timeslice it 
was resident on the array. The scheduler uses this to 
determine when to perform deadlock detection (see 
Section 2.4.3). 

Objects of type ScoreGraphNode are never 
instantiated directly by the runtime system. Rather, the 
system instantiates the derivative types: ScorePage and 
ScoreSegment. 

 
Figure 34 - Diagram of ScoreGraphNode Data Type 

6.1.4 ScorePage 

The ScorePage data type is derived from 
ScoreGraphNode. It is a specialized version of 
ScoreGraphNode used to represent SCORE pages in the 
dataflow. Objects of this type are first created during 
operator instantiation (see Section 2.3.1). 

6.1.5 ScoreSegment 

The ScoreSegment data type is also derived from 
ScoreGraphNode. It is a specialized version of 
ScoreGraphNode used to represent SCORE segments in 
the dataflow. It also serves as a parent class for 
ScoreSegmentStitch (see 6.1.7). Objects of this type are 
first created either during operator instantiation (see 
Section 2.3.1) or as a result of stitch buffer insertion 
(see 2.3.2.7). 

In addition to the variables in ScoreGraphNode, 
ScoreSegment contains information pertinent to 
segments: a pointer to the user data block for the 

segment, the size of the data block, and the mode of the 
segment. The data block pointer and size allow the 
scheduler to properly load the CMBs on the array when 
the segment is scheduled. The mode can be any one of 
the modes described in Section 1.1.1.2). For most 
segments, the mode is constant throughout the 
instantiation of the segment. However, with 
ScoreSegmentStitch, the segment mode may change 
depending on the resident dataflow nodes. 

6.1.6 ScoreStream 

While ScoreGraphNode describes the nodes of the 
dataflow graph, ScoreStream describes the token stream 
connections between pages and segments. Figure 35 
shows the key variables in ScoreStream. The most 
important variables are src, srcNum, sink, and snkNum 
which reference the producer and consumer nodes 
along with the corresponding output and input port 
numbers. In addition to the source and sink node 
pointers, ScoreStream also stores information about the 
type (page, segment, or processor) of the nodes in 
srcFunc and snkFunc. This optimizes graph traversal by 
providing type information without dereferencing src or 
sink. Further optimization is provided by the srcIsDone 
and sinkIsDone flags which indicate whether the source 
and sink nodes have signaled done. Finally, 
isCrossCluster and inProcessorArrayStream indicate 
whether the stream connects nodes in different clusters 
or if it provides processor-array communication. 

6.1.7 ScoreSegmentStitch 

The ScoreSegmentStitch data type is derived from 
the parent class ScoreSegment. It serves to represent a 
stitch buffer added by the scheduler to the dataflow (see 
Section 2.3.2.7). Currently, its key variables are the 
same as ScoreSegment. When expandable stitch buffers 
are implemented, variables relevant to the expanded 
stitch buffer will also be stored in this data type (see 
Section 4.1). 

The role of a stitch buffer is to capture the output 
data from a stream whose nodes are not coscheduled. It 
saves the output tokens until the stream consumer can 
run in the array. The stitch buffer then provides the 
previously captured tokens to the consumer. This helps 
maintain the abstraction of infinite hardware resources. 

6.1.8 ScoreCluster 

The ScoreCluster data type is used to represent a 
cluster of pages or segments. In SCORE, nodes in a 
cluster are scheduled atomically; this means either all of 
these nodes are resident or all are not resident. Clusters 
are formed as part of the operator instantiation process. 
To guarantee nodes of a feedback loop are never non-
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coresident (see Section 2.3.1.1). In the future, clusters 
may also be used to optimize scheduling in other ways, 
such as minimizing CMB usage (see Section 4.4). 

ScoreCluster includes a list of member 
ScoreGraphNodes, along with lists of ScoreStreams 
that form the cluster input and output ports. There is 
also a pointer to the parent ScoreProcess. 
Complementing nodeList, there are counts of the 
number of individual pages and segments in the cluster. 
There are also flags for whether the cluster is resident, 
scheduled, or considered freeable. Finally, the 
isFrontier, isHead and lastFrontierTraversal  variables 
are specialized fields used by the “frontier” scheduling 
heuristic (see Section 2.4.1). 

6.2 Data Structures 
The SCORE scheduler maintains several data 

structures that allow it to keep track of the state of the 
array as well as facilitate transferring decisions between 
scheduler stages (see Section 2.3.2). 

 
Figure 35 - Diagram of ScoreStream Data Type 
 

Figure 37 shows a diagram of the important data 
structures in ScoreScheduler. The entire design 
hierarchy can be accessed via the list of 
ScoreProcesses, processList. The scheduling task list 
and resident cluster list consist of frontierClusterList, 
headClusterList, waitingClusterList, and 
residentClusterList. These are used by the “frontier” 
scheduling heuristic (see Section 2.4.1). The streams 
used to communicate between the processor and array 
are stored in processorIStreamList and 
processorOStreamList. Any stitch buffers added to 
handle non-coresident streams as well as those added to 
resolve bufferlock are stored in stitchBufferList. 

 
Figure 36 - Diagram of ScoreCluster Data Type 

As the scheduler schedules and removes pages and 
segments, arrayCP and arrayCMB are updated to reflect 
the resident nodes on the array. These are arrays whose 
elements consist of ScoreArrayCP and 
ScoreArrayCMB. The main fields in ScoreArrayCP and 
ScoreArrayCMB are: 

?? Active (the page or segment that is resident at this 
location). 

?? Scheduled (the page or segment that is scheduled 
to be resident at this location).  

 
Figure 37 - Diagram of data structures in ScoreScheduler 
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These arrays are used when making scheduling 
decisions as well as during array reconfiguration. 

The scheduler also maintains data structures that 
are used to communicate decisions between scheduler 
stages (see Section 2.3.2). These include: 

?? cpStatus and cmbStatus: current array status from 
getArrayStatus(); 

?? doneNodeList and doneClusterList: nodes and 
clusters considered done by 
findDoneNodePagesSegments(); 

?? freeableClusterList: clusters considered freeable 
by findFreeableClusters(); 

?? faultedMemSegList: segments determined to have 
experienced an address fault by 
findFaultedMemSeg(); 

?? scheduledPageList, scheduledMemSegList, 
removedPageList, removedMemSegList, 
configChangedStitchSegList: pages and segments 
scheduled or removed by scheduleClusters(); in 
addition, any resident stitch buffers needing mode 
adjustment. 

The final variables in the scheduler are 
schedulerDataMutex, currentTimeslice, and 
currentTraversal. The schedulerDataMutex is a lock 
variable used to synchronize between the IPC thread 
and the scheduler thread for access to the scheduler data 
structures. The currentTimeslice variable allows the 
scheduler to keep track of the number of timeslices that 
have elapsed. Finally, the currentTraversal variable is 
used by the “frontier” scheduling heuristic to prevent 
scheduling starvation (see Section 2.4.1). 
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