
A Streaming Multi-Threaded Model

Extended Abstract

Eylon Caspi, André DeHon, John Wawrzynek

September 30, 2001

Summary. We present SCORE, a multi-threaded model that relies on streams to

expose thread parallelism and to enable efficient scheduling, low-overhead communica-

tion, and scalability. We present work to-date on SCORE for scalable reconfigurable

logic, as well as implementation ideas for SCORE for processor architectures. We

demonstrate that streams can be exposed as a clean architectural feature that supports

forward compatibility to larger, more parallel hardware.

For the past several decades, the predominant architectural abstraction for pro-

grammable computation systems has been the instruction set architecture (ISA). An

ISA defines an instruction set and semantics for executing it. The longevity of the ISA

model owes largely to the fact that those semantics decouple software from hardware

development, so that hardware can improve without sacrificing the existing software

of an architectural family (e.g. the now 23-year old Intel x86 family; the IBM 360).

Increasingly, however, ISA uniprocessors are running out of headroom for perfor-

mance improvement, due primarily to the increasing costs of extracting and exploiting

ILP. Today’s state-of-the art processors expend much of their area and power in hard-

ware features to enhance ILP and tolerate latency, including caches, branch prediction

units, and instruction reorder buffers. Recently, new architectures have emerged to

exploit other forms of parallelism, including explicit instruction parallelism (VLIW),

data-level parallelism (vector, MMX), and thread-level parallelism (chip multipro-

cessors, multi-threaded processors). These architectures typically sacrifice some of

1

the desirable properties of the single-threaded ISA model, be it ease of program-

ming, compiler analyzability (e.g. obscured inter-thread communication patterns),

or forward compatibility to larger hardware (e.g. VLIW). In this paper we present

SCORE, a scalable, multi-threaded computation model and associated architectural

abstraction that maintain some of the best properties of the ISA model. The model is

highly parallel, efficient, and supports forward compatibility of executable programs

to larger hardware.

At the heart of SCORE is the premise that streams (inter-thread communication

channels with FIFO discipline) should be a fundamental abstraction that is exposed

both in the programming model and in the architectural model. We rely on streams

because: (1) streams expose inter-thread communication dependencies (data-flow),

allowing efficient scheduling; (2) streams admit data batching (data blocking) to

amortize the cost of context swaps and inter-thread communication—in particular,

the per-message cost of communication can be made negligible by setting-up and

reusing a stream, and this reuse can be fully automated as part of thread scheduling;

(3) streams can be exposed as a clean architectural feature, resembling a memory

interface, that admits hardware acceleration, protection, and forward compatibility.

SCORE draws heavily on the prior work of numerous parallel compute models and

system implementations. Due to space constraints in this paper, we refer the reader

to [1] for a more complete treatment of related work and implementation details.

In the remainder of this paper we discuss: (a) the basic primitives and properties

of the SCORE model; (b) a binding of SCORE for reconfigurable logic, including a

hardware model, programming model, scheduler, and simulation results for a media

processing application; and (c) ideas for a binding of SCORE for processor architec-

tures.

2

The SCORE Model.

A SCORE program is a collection of threads that communicate via streams. A

thread here has the usual meaning of a process with local state, but there is no

global state shared among threads (such as shared memory). The only mechanism for

inter-thread communication and synchronization is the stream, an inter-thread com-

munication channel with FIFO order (first-in-first-out), blocking reads, non-blocking

writes, and conceptually unbounded capacity. In this respect, SCORE closely resem-

bles Kahn process networks [2] or, as we shall see later, dataflow process networks

[3]. A processor is the basic hardware unit that executes threads, one at a time, in a

time-multiplexed manner when there are more threads than processors.

Since threads interact with each other only through streams, it is possible to exe-

cute them in any order allowed by the stream data-flow, with deterministic results.1

The data-flow graph induced by stream connections exposes inter-thread dependen-

cies, which reflect actual inter-thread parallelism. Those dependencies can be used to

construct schedules that are more efficient for a particular hardware target (i.e. min-

imize idle cycles) and which can be pre-computed. In contrast, other threading mod-

els tend to obscure inter-thread dependencies (e.g. pointer aliasing in shared memory

threads) and restrict scheduling using explicit synchronization (e.g. semaphores, bar-

riers). Such restricted schedules cannot take advantage of larger hardware and thus

undermine forward compatibility.

Threads can be time-sliced to batch-process a large sequence of inputs. Batching

is useful for amortizing the run-time costs of context swapping and of setting up

stream connections and buffers. This batching mechanism is similar in spirit to

traditional data blocking for better cache behavior, but in our case the blocking factor

is determined in scheduling and can be tailored to the available hardware (namely to

1The blocking read and FIFO order of streams guarantee determinism under any schedule. Non-
determinism can be added to the model by allowing non-blocking stream reads, in which case thread
execution becomes sensitive to scheduling and communication timing.

3

available buffer sizes) as late as at run-time. This late binding of the blocking factor

contributes to forward compatibility and performance scaling on larger hardware. In

contrast, data blocking in non-streaming models is fixed at compile time and cannot

improve performance on larger hardware.

SCORE for Reconfigurable Architectures.

Our first target for SCORE is as a model for scalable reconfigurable systems.

Reconfigurable logic (e.g. field programmable gate arrays—FPGAs) is a promising

performance platform because it combines massive, fine-grained, spatial parallelism

with programmability. Programmability, and in particular dynamic reconfiguration,

aids performance because: (1) it can improve hardware utilization by giving otherwise

idle logic a meaningful task, and (2) it allows specializing a computation around its

data, later than compile time. Although reconfigurable systems (FPGAs, CPLDs)

have been available commercially for some time, they have no ISA-like abstraction

to decouple hardware from software. Resource types and capacities (e.g. LUT count)

are exposed to the programmer, forcing him/her to bind algorithmic decisions and

reconfiguration times to particular devices, thereby undermining the possibility of

forward compatibility to larger hardware.

SCORE hides the size of hardware from the programmer and the executable using

a notion of hardware paging. Programs and hardware are sliced into fixed-size com-

pute pages that, in analogy to virtual memory pages, are automatically swapped into

available hardware at run-time by operating system support. A paged computation

can run on any number of compute pages and will, without recompilation, see per-

formance improvement on more pages. Inter-page communication uses a streaming

discipline, which is a natural abstraction of synchronous wire communication, but

which is independent of wire timing (a page stalls in the absence of stream input),

and which allows data batching. Batching is critical to amortizing the typically high

4

L2 Cache

MMUICache DCacheuP

CP

CMB

Figure 1: Hypothetical,
single-chip SCORE system

JPEG Encode Run-Time

0.0

0.5

1.0

1.5

2.0

4 5 6 7 8 9 10 11 12 13 14 15

Hardware Size (CPs)

M
ak

es
p

an
 (

M
 C

yc
le

s)

Exhaustive
Topological
Mincut

Figure 2: Run times for JPEG Encode

cost of reconfiguration. With respect to the abstract SCORE model, a compute page

serves the role of a processor, whereas a page configuration serves the role of a thread.

The basic SCORE hardware model is shown in Figure 1. A compute page (CP) is

a fixed-size slice of reconfigurable fabric (typically logic and registers) with a stream

network interface. The fabric kind, size, and number of I/O channels (streams) are

architecturally defined and are identical for all pages (we presently target a page of 512

4-LUTs). The number of pages can vary among architecturally compatible devices. A

page’s network interface includes stream flow control (data presence and back-pressure

to stall the page) and a buffer of several words per stream (for reducing stalls and

draining in-flight communication). A configurable memory block (CMB) is a memory

block with a stream network interface and a sequential address generator. The CMB

memory capacity is architecturally defined (we presently target a CMB of 2Mbit). A

CMB holds stream buffers, user data, and page configurations, under OS-controlled

memory management. A conventional microprocessor is used for page scheduling

and OS support. The common streaming protocol linking these components allows

a page thread to be completely oblivious to whether its streams are connected to

another page, to a buffer in a CMB, or even to the microprocessor. The actual

5

network transport is less important, though it should ideally have high bandwidth.

We presently assume a scalable interconnect modeled after the Berkeley HSRA [4] that

is circuit-switched, fat-tree structured, and pipelined for high-frequency operation.

We have designed a language (TDF) for specifying page threads and inter-page

data-flow, as well as a compiler (tdfc) to compile threads into page simulation code

or into POSIX threads for microprocessor execution. Microprocessor threads interact

with simulated hardware using a stream API and can dynamically spawn and connect

page threads. A TDF page thread is defined as a streaming finite state machine

(SFSM), essentially an extended FSM with streaming I/O. The execution semantics

specify that on entry into a state the SFSM issues blocking reads to those streams

specified in the state’s input signature. When input is available on those streams, the

SFSM fires, executing a state-specific action described in a C-like syntax. At present,

SFSMs must be explicitly written to match page hardware constraints (area, I/Os,

timing), but we are working on an automatic partitioner to decompose arbitrarily

large SFSMs into groups of stream-connected, page-size SFSMs.2 We have written

a number of media processing applications in TDF, including wavelet, JPEG, and

MPEG coding.

We have developed and tested several page schedulers. Each such scheduler is a

privileged microprocessor task responsible for time-multiplexing a collection of page

threads on available physical hardware. We use a time-sliced model where, in each

time slice, the scheduler chooses a set of page threads to execute in hardware and man-

ages stream buffers to communicate with suspended pages. Schedules are quasi-static,

with a page loading order determined once from the stream data-flow topology and

applied repeatedly. Schedules strive to run communicating pages together to reduce

2Thread sizing (to match a page) is an artifact of the reconfigurable hardware target. It may
be unnecessary or optional with other hardware targets and should, in general, not be exposed
to the programmer. Partitioning SFSMs into reconfigurable pages is in some ways analogous to
restructuring microprocessor code to improve VM page locality.

6

communication latency (especially under inter-page feedback) and stream buffering.

Figure 2 shows performance results for running JPEG encode (an application

with 15 page threads) on simulated hardware of varying page counts, using three

quasi-static schedulers. First, these results demonstrate that application performance

scales predictably across hardware sizes—more hardware means shorter run-times.

Second, these results demonstrate that time-multiplexing is efficient in the sense that

the application can run on substantially fewer compute pages than there are page

threads, with negligible performance loss. The application, as implemented, has

limited parallelism that requires some threads to be idle some of the time—a time-

multiplexed schedule can avoid loading such threads into idle hardware. Third, these

results show that simple, heuristic schedulers based on stream data-flow topology

(topological : topological order, min-cut : minimize buffered streams) perform almost

as well an exhaustive-search to minimize idle cycles (exhaustive).

SCORE for Processor Architectures.

The SCORE architecture developed above can be easily extended with additional

processor types. We have already defined three processor types: CP, CMB, and

microprocessor. An extended architecture might use specialized function units (ALUs,

FFT units, etc.) or additional microprocessors. Each processor must have a stream

network interface with ability to stall the processor. The network fabric may vary.

Streams can be added to a microprocessor as a clean architectural feature, re-

sembling a memory interface. The instruction set is extended with load/store-like

operations: stream read(register,index) and stream write(register,index), where in-

dex enumerates the space of streams (like a memory address), and register denotes

a value register. Stream reads must be able to stall the processor (like memory wait

states), while stream writes can resume immediately (like memory stores to a write

buffer). These features can be handled by stream access units, resembling memory

7

load/store units, even with out-of-order issue. These units must transparently route

stream accesses either to a network interface or to memory buffers. Stream state

(“live” or “buffered”) and buffer locations can be stored in a TLB-like stream table,

backed by a larger table in memory (like a VM page table). Access protection can be

added using a process ID in the stream table. Finally, stalled stream accesses should

time out after a while, allowing a scheduler to swap out blocked threads. Many

of these features could be emulated on a conventional microprocessor using mem-

ory mapping or a co-processor interface, plus an external controller to route stream

accesses to a network or to buffer memory.

The scheduling policies for reconfigurable hardware are easily adapted to multi-

processor and multi-threaded processor architectures, provided I/O operations are

as fast as memory operations. A chip multi-processor would be scheduled like a

SCORE architecture with only microprocessors. A multi-threaded processor would

be scheduled similarly, treating each hardware thread as a separate SCORE proces-

sor. Communication between threads loaded in hardware is “live” through registers,

whereas communication to threads swapped-out to memory is buffered in memory.

In either case, the scheduler prefers to co-schedule communicating threads.

References

[1] E. Caspi, M. Chu, R. Huang, J. Yeh, Y. Markovskiy, J. Wawrzynek, and A. DeHon.
Stream computations organized for reconfigurable execution (SCORE): Introduction
and tutorial. http://brass.cs.berkeley.edu/documents/score_tutorial.pdf, Au-
gust 2000.

[2] G. Kahn. Semantics of a simple language for parallel programming. Info. Proc., pages
471–475, August 1974.

[3] E. A. Lee and T. M. Parks. Dataflow process networks. Proc. IEEE, 83(5):773–801,
May 1995.

[4] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O. Rowhani, V. George,
J. Wawrzynek, and A. DeHon. Hsra: High-speed, hierarchical synchronous reconfig-
urable array. In Proc. International Symposium on Field Programmable Gate Arrays
(FPGA ’99), pages 125–134, February 1999.

8

