
A Streaming Multi-Threaded Model

Eylon Caspi
University of California,

Berkeley

eylon@cs.berkeley.edu

André DeHon
California Institute of

Technology

andre@acm.org

John Wawrzynek
University of California,

Berkeley

johnw@cs.berkeley.edu

ABSTRACT
We present SCORE (Stream Computations Organized for
Reconfigurable Execution), a multi-threaded model that relies
on streams to expose thread parallelism and to enable efficient
scheduling, low-overhead communication, and scalability. We
present work to-date on SCORE for scalable reconfigurable
logic, as well as implementation ideas for SCORE for processor
architectures. We demonstrate that streams can be exposed
as a clean architectural feature that supports forward
compatibility to larger, more parallel hardware.

1. OVERVIEW
For the past several decades, the predominant architectural
abstraction for programmable computation systems has
been the instruction set architecture (ISA). An ISA defines
an instruction set and semantics for executing it. A key
benefit of the ISA model is that those semantics decouple
software from hardware development. A piece of software,
written and compiled once, is guaranteed to run on any
ISA-compatible device. This guarantee allows hardware to
evolve over time, growing larger and faster with each process
generation. The existing software base is preserved, and
its performance automatically improves with each hardware
generation. The ISA abstraction has been instrumental in
protecting our investment in software and allowing it to ride
Moore’s law to better performance. Two shining examples
are the IBM 360 and Intel x86 architectures, which have
survived commercially for decades. The latter, in its 23 years
of existence, has seen clock speeds increase nearly 400x and
transistor counts grow nearly 10,000x.1

Increasingly, however, ISA uniprocessors are running out
of headroom for performance improvement, due primarily
to the increasing costs of extracting and exploiting
instruction level parallelism (ILP). Today’s state-of-the

1Comparing the Intel 8086 at 5MHz (29,000 transistors, introduced
June 1978) to the0.18µ 2GHz P4 (221 million transistors,
introduced August 2001). [14]

To appear in the Third Workshop on Media and Stream Processors, in
conjunction with MICRO-34, Austin, Texas, Dec. 2001.

art processors expend much of their area and power in
hardware features to enhance ILP and tolerate latency,
including caches, branch prediction units, and instruction
reorder buffers. Recently, new architectures have emerged
to exploit other forms of parallelism, including explicit
instruction parallelism (VLIW), data-level parallelism
(vector, MMX), and thread-level parallelism (chip
multiprocessors, multi-threaded processors). These
architectures typically sacrifice some of the desirable
properties of the single-threaded ISA model, be it ease
of programming, compiler analyzability (e.g. obscured
inter-thread communication patterns), or forward
compatibility to larger hardware (e.g. VLIW). In this
paper we present SCORE, a scalable, multi-threaded
computation model and associated architectural abstraction
that maintain some of the best properties of the ISA model.
The model is highly parallel, efficient, and supports forward
compatibility of executable programs to larger hardware.

At the heart of SCORE is the premise that streams
(inter-thread communication channels with FIFO discipline)
should be a fundamental abstraction that is exposed both
in the programming model and in the architectural model.
We rely on streams because: (1) streams expose inter-thread
communication dependencies (data-flow), allowing efficient
scheduling; (2) streams admit data batching (data blocking)
to amortize the cost of context swaps and inter-thread
communication—in particular, the per-message cost of
communication can be made negligible by setting-up and
reusing a stream, and this reuse can be fully automated as
part of thread scheduling; (3) streams can be exposed as a
clean architectural feature, resembling a memory interface,
that admits hardware acceleration, protection, and forward
compatibility.

The remainder of this paper is organized as follows. Section
2 (“Related Work”) cites prior work in data-flow, streaming,
and architecture that has inspired SCORE. Section 3
(“The SCORE Model”) discusses the basic primitives and
properties of the SCORE model. Section 4 (“SCORE
for Reconfigurable Architectures”) presents a binding of
SCORE for reconfigurable logic, including a hardware
model, programming model, scheduler, and simulation
results for a media processing application. Section 5
discusses ideas for a binding of SCORE for processor
architectures.

2. RELATED WORK
SCORE draws heavily on the prior work of numerous
parallel models and architectures. This section highlights
only a few of those works. We refer the reader to [7] for a
more complete treatment.

Hoare’s Communicating Sequential Processes (CSP) [13]
was one of the first strong models for parallel computation.
SCORE shares with CSP the general notion of computation
as a collection of communicating, independent, processes
with local control. The SCORE model is more stylized,
making it amenable to virtualization and use of a strong
hardware-software interface. SCORE emphasizes a design
that preserves deterministic behavior regardless of target
hardware size and scheduling.

Data-flow processing from Dennis [10] and Arvind [3]
introduced parallel models and architectures with more
flexible scheduling. Later work in Culler’s Threaded
Abstract Machine (TAM) [8] and Active Messages
(AM) [11] was an important attempt to capture
the essence of a parallel programming model at the
software-hardware boundary and to make communication
lightweight. SCORE’s use of persistent, streaming data-flow
is significant in overcoming many of the overheads that still
made TAM expensive to implement.

Mosaic [21], J- and M-machines [9] [12] were early
multicomputers pioneering the tight integration of
communication into the processor ISA. Nonetheless,
their use of dynamic messages still required a few tens of
cycles to send each message [18]. Streaming in SCORE
enables pipelined communication, reducing the time
required to send or receive a message to as little as one
machine cycle, with proper hardware support.

A wide range of shared-memory machines, including
DASH [19], Alewife [2], and FLASH [16] showed
that the memory abstraction was useful for some
communication. However, they observed that relying solely
on shared-memory cache-coherence for communication
was not sufficient to broadly deliver high performance.
Shared-memory programming remains much more difficult
than single-threaded programming, owing primarily to the
fact that determinism by synchronization is entirely the
burden of the programmer.

Streaming data-flow has been used heavily in Digital-Signal
Processing (DSP). Lee’s Synchronous Dataflow (SDF) [4]
is a heavy influence for SCORE. Lee’s SDF is restricted
to static rates and static flow graphs, suitable for
systems modeled completely at compile-time. Later work,
such as Buck’s Boolean-Controlled Dataflow [6], supports
some dynamic programming constructs, but still with a
compile-time focus. SCORE expands on these models to
handle more dynamic characteristics such as dynamic flow
rates and graph evolution, as well as variable hardware
resource availability.

Also inspirational to SCORE are heterogeneous systems
that use streaming data-flow to tie together arbitrary
processors (conventional, special-purpose, and/or
reconfigurable). Examples include MIT’s Cheops [5],

MagicEight [23], and Berkeley’s Pleiades [1]. These
systems provide interesting performance point with a mix
of processing elements. Our work on SCORE for hybrid
reconfigurable hardware (Section 4) builds on these models
by defining a common programming model for all processing
elements (microprocessor and reconfigurable in our case)
and by virtualizing the number and type of elements.

3. THE SCORE MODEL
A SCORE program is a collection of threads that
communicate via streams. A thread here has the
usual meaning of a process with local state, but there
is no global state shared among threads (such as
shared memory). The only mechanism for inter-thread
communication and synchronization is the stream, an
inter-thread communication channel with FIFO order
(first-in-first-out), blocking reads, non-blocking writes, and
conceptually unbounded capacity. In this respect, SCORE
closely resembles Kahn process networks [15] and more
specifically, Dataflow process networks [17]. A processor is
the basic hardware unit that executes threads, one at a time,
in a time-multiplexed manner when there are more threads
than processors.

Since threads interact with each other only through streams,
it is possible to execute them in any order allowed by the
stream data-flow, with deterministic results.2 The data-flow
graph induced by stream connections exposes inter-thread
dependencies, which reflect actual inter-thread parallelism.
Those dependencies can be used to construct schedules
that are more efficient for a particular hardware target
(i.e. minimize idle cycles) and which can be pre-computed.
In contrast, other threading models tend to obscure
inter-thread dependencies (e.g. pointer aliasing in shared
memory threads) and restrict scheduling using explicit
synchronization (e.g. semaphores, barriers). Such restricted
schedules may not be able to take full advantage of larger
hardware and thus undermine forward compatibility.

Threads can be time-sliced to batch-process a large sequence
of inputs. Batching is useful for amortizing the run-time
costs of context swapping and of setting up stream
connections and buffers. This batching mechanism is
similar in spirit to traditional data blocking for better cache
behavior, but in our case the blocking factor is determined
in scheduling and can be tailored to the available hardware
(namely to available buffer sizes) as late as at run-time. This
late binding of the blocking factor contributes to forward
compatibility and performance scaling on larger hardware.
In contrast, data blocking in non-streaming models is fixed
at compile time and cannot improve performance on larger
hardware.

4. SCORE FOR RECONFIGURABLE
ARCHITECTURES

Our first target for SCORE is as a model for
scalable reconfigurable systems. Reconfigurable

2The blocking read and FIFO order of streams guarantee
determinism under any schedule. Non-determinism can be
added to the model by allowingnon-blocking stream reads, in
which case thread execution becomes sensitive to scheduling and
communication timing.

L2 Cache

MMUICache DCacheuP

CP

CMB

Figure 1: Hypothetical, single-chip SCORE system

logic (e.g. field programmable gate arrays—FPGAs)
is a promising performance platform because it
combines massive, fine-grained, spatial parallelism with
programmability. Programmability, and in particular
dynamic reconfiguration, aids performance because: (1)
it can improve hardware utilization by giving otherwise
idle logic a meaningful task, and (2) it allows specializing
a computation around its data, later than compile time.
Although reconfigurable systems (FPGAs, CPLDs) have
been available commercially for some time, they have no
ISA-like abstraction to decouple hardware from software.
Resource types and capacities (e.g. LUT count) are exposed
to the programmer, forcing him/her to bind algorithmic
decisions and reconfiguration times to particular devices,
thereby undermining the possibility of forward compatibility
to larger hardware.

SCORE hides the size of hardware from the programmer and
the executable using a notion of hardware paging. Programs
and hardware are sliced into fixed-size compute pages that,
in analogy to virtual memory pages, are automatically
swapped into available hardware at run-time by operating
system support. A paged computation can run on any
number of compute pages and will, without re-compilation,
see performance improvement on more pages. Inter-page
communication uses a streaming discipline, which is a
natural abstraction of synchronous wire communication, but
which is independent of wire timing (a page stalls in the
absence of stream input), and which allows data batching.
Batching is critical to amortizing the typically high cost
of reconfiguration. With respect to the abstract SCORE
model, a compute page serves the role of a processor,
whereas a page configuration serves the role of a thread.

transform

quantize

RLE

encode

swap swap swap

swap

spatial

tem
poral

rle enc

qnttran

tran qnt rle enc

Figure 2: Hypothetical executions of JPEG Encode
on a large and small device

Microarchitecture. The basic SCORE hardware model is
shown in Figure 1. A compute page (CP) is a fixed-size slice
of reconfigurable fabric (typically logic and registers) with a
stream network interface. The fabric kind, size, and number
of I/O channels (streams) are architecturally defined and
are identical for all pages (we presently target a page of 512
boolean 4-input lookup tables, or “4-LUTs”). The number
of pages can vary among architecturally compatible devices.
A page’s network interface includes stream flow control
(data presence and back-pressure to stall the page) and a
buffer of several words per stream (for reducing stalls and
draining in-flight communication). A configurable memory
block (CMB) is a memory block with a stream network
interface and a sequential address generator. The CMB
memory capacity is architecturally defined (we presently
target a CMB of 2Mbit). A CMB holds stream buffers,
user data, and page configurations, under OS-controlled
memory management. A conventional microprocessor is
used for page scheduling and OS support. The common
streaming protocol linking these components allows a page
thread to be completely oblivious to whether its streams are
connected to another page, to a buffer in a CMB, or even
to the microprocessor. The actual network transport is less
important, though it should ideally have high bandwidth.
We presently assume a scalable interconnect modeled after
the Berkeley HSRA [22] that is circuit-switched, fat-tree
structured, and pipelined for high-frequency operation.

Execution. Figure 2 illustrates possible executions of
a JPEG encode application on two instances of the
microarchitecture described above. The application is
described as a data-flow graph of stream-connected page
threads (page configurations). A spatial execution may be
used if the target hardware is large enough to simultaneously
execute all page threads. In this case, each thread is
loaded into a compute page, and each stream is mapped
to on-chip interconnect. Primary inputs and outputs may
be mapped to buffers in on-chip CMBs, which may be
periodically flushed/refilled by the microprocessor. On the
other hand, a time-multiplexed execution may be used if

select (input boolean s,

input signed[16] t,

input signed[16] f,

output signed[16] o)

{
state S(s): if (s) goto T; else goto F;

state T(t): o=t; goto S;

state F(f): o=f; goto S;

}

Figure 3: TDF code for a select operator which
selectively passes input t or f to output o based on
the select input s

the target hardware is small. In this case, threads are
clustered into groups, each of which is loaded in turn
onto available compute pages. Any stream that outputs
to a non-loaded thread is routed to a CMB for buffering;
similarly, inputs from a non-loaded thread are routed from
a CMB buffer. A cluster of pages may run until it exhausts
its input buffers and/or fills its output buffers, at which
point the next cluster of pages is loaded. The actual page
loading order is determined by an automatic scheduler on
the microprocessor, described below.

Compilation. We have designed a language (TDF, the
Task Description Format) and associated compiler (tdfc)
for specifying page threads and inter-page data-flow. A
thread in TDF is a streaming finite state machine (SFSM),
essentially an extended FSM with streaming I/O, that
describes the cycle-by-cycle behavior of a compute page.
TDF execution semantics specify that on entry into a state
the SFSM issues blocking reads to those streams specified in
the state’s input signature. When input is available on those
streams, the SFSM fires, executing a state-specific action
described in a C-like syntax. The firing action is straight-line
code; looping is accomplished by re-entering the state and
re-evaluating its input signature. Figure 3 shows an example
TDF thread to implement a select operation. TDF also
includes syntax for composing persistent data-flow graphs
of stream-connected page threads and supports a hierarchy
of sub-graphs.

A TDF thread can be compiled into one of two forms. A
thread can be compiled into compute page logic, which
in the present implementation is evaluated by a device
simulator. Alternatively, a thread can be compiled “for the
microprocessor” as a POSIX thread with a stream API. The
API allows stream communication between threads on the
microprocessor and threads on compute pages. It also allows
threads on the microprocessor to spawn and connect new
threads.

At present, TDF threads must be explicitly written to
match the hardware constraints (area, I/O, timing) of a
compute page. That is, an SFSM must fit in a compute
page and must execute each state action within a device
cycle. In general, such device details must not be exposed
to the programmer, since they tie the program to the

device and thus undermine forward compatibility. We are
presently working on automatic synthesis and partitioning of
SFSMs, to transform arbitrarily large and complex SFSMs
into groups of stream-connected, page-size SFSMs.3 The
primary challenge for page partitioning is that inter-page
communication delay (stream latency) is not known at
compile time. Communication delay depends on device
size, page placement, and page scheduling. Communication
delay may be arbitrarily large between threads that are
not simultaneously executing in hardware. Our basic
partitioning approach is as follows. First, we attempt to
hoist code out of the SFSMs and into pipelines, so as
to shrink the size and delay of the cyclic state machine
cores. Resulting SFSMs that are still larger than a page
are decomposed by clustering states into pages so as to
minimize the frequency of inter-page state transitions. State
transition frequencies can be profiled beforehand in an
execution of pure microprocessor threads. SFSM area and
timing is estimated using a 4-LUT area/time model of the
data path components.

Page Scheduling. We have developed and tested several
page schedulers. Each such scheduler is a privileged
microprocessor task responsible for time-multiplexing a
collection of page threads on available physical hardware.
We use a time-sliced model where, in each time slice,
the scheduler chooses a set of page threads to execute
in hardware and manages stream buffers to communicate
with suspended pages. The scheduler is responsible for
reconfiguring the hardware (CPs, CMBs, interconnect),
including data transfer between primary memory and
the CMBs. The general policy of every scheduler
is to execute communicating pages together so as to
reduce communication latency (especially under inter-page
feedback), to reduce the number of buffered streams, and to
reduce reconfiguration frequency.

Our initial scheduler was completely dynamic, making
all decisions at time-slice intervals. The advantage of
a dynamic scheduler versus a static one is that it can
use dynamic information about stream buffer fullness and
page stalls to construct efficient, reactive schedules. We
used a list-based scheduling policy to select for execution
those pages with the most buffered input available, the
intent being that those pages would run the longest before
requiring reconfiguration. In practice, however, performance
suffered from high scheduling overhead and from occasional
stalling when the page loading order violated the page
graph’s dependence order.

To reduce run-time overhead and improve analysis, we
subsequently designed three static schedulers that compute
a single, repeated page loading order for each page graph.4

The “topological” scheduler chooses a loading order to

3The need to resize a thread to match a page is an artifact of
the reconfigurable hardware target. It may be unnecessary or
optional for other hardware targets. For example, partitioning an
SFSM into compute pages is somewhat analogous to restructuring
microprocessor code for better locality in virtual memory pages.
4SCORE allows dynamic spawning of page threads and page
graphs. A static schedule must be generated separately for each
graph. In our actual implementation, we compute optimized,
graph-specific schedules off-line using profile information collected
by a previous, unoptimized execution.

JPEG Encode Run-Time
Quasi-Static Scheduling

0.0

0.5

1.0

1.5

2.0

2.5

4 5 6 7 8 9 10 11 12 13 14 15

Hardware Size (CPs)

M
ak

es
p

an
 (

M
 C

yc
le

s)

Exhaustive
Topological
Min-cut

Figure 4: Run times for JPEG Encode using
quasi-static scheduling

JPEG Encode Run-Time

0
1
2
3
4
5
6
7
8
9

10

4 5 6 7 8 9 10 11 12 13 14 15

Hardware Size (CPs)

M
ak

es
p

an
 (

M
 C

yc
le

s)

Dynamic
Static
Quasi-Static

Figure 5: Run times for JPEG Encode using
different schedulers (“exhaustive” static and
quasi-static5)

satisfy page precedence constraints, by topologically sorting
the page graph. The “min-cut” scheduler chooses a loading
order to minimize the number of stream buffers required
in any time-slice, by min-cutting the page graph. The
“exhaustive” scheduler chooses a loading order to minimize
stalled cycles in loaded pages, by exhaustively searching
the space of orderings, using profiled I/O rates to estimate
input availability. Analysis (discussed below) shows that
the heuristic schedulers (“topological,” “min-cut”) perform
surprisingly well, yielding almost the same application
run-times as the exhaustive search.

Interestingly, the best performance was demonstrated
neither by the dynamic nor the static schedulers, but rather
by a class of hybrid, quasi-static schedulers. The quasi-static
schedulers extend the static schedulers with the dynamic
ability to detect when all compute pages have blocked on
stream access (due to empty/full stream buffers), and to
immediately advance to the next time-slice. The same three
policies apply: “topological,” “min-cut,” and “exhaustive.”

5The astute reader will notice a small disparity between Figures 4

JPEG Decode Run-Time
Quasi-Static Scheduling

0.0

0.5

1.0

1.5

2.0

2.5

3 4 5 6 7 8 9 10 11 12 13 14 15

Hardware Size (CPs)

M
ak

es
p

an
 (

M
 C

yc
le

s)

Exhaustive
Topological
Min-cut

Figure 6: Run times for JPEG Decode using
quasi-static scheduling

JPEG Decode Run-Time

0

2

4

6

8

10

12

14

3 4 5 6 7 8 9 10 11 12 13 14 15

Hardware Size (CPs)

M
ak

es
p

an
 (

M
 C

yc
le

s)
Dynamic
Static
Quasi-Static

Figure 7: Run times for JPEG Decode using
different schedulers (“exhaustive” static and
quasi-static5)

Analysis. We have written and tested several media
processing applications for SCORE, including wavelet
encode/decode, JPEG encode/decode, and MPEG encode.
Figures 4–7 show performance results for running JPEG
encode and decode (each having 15 page threads) on
simulated hardware of varying page counts, using different
schedulers. The device model scales the number of CMBs
with the number of pages. The device simulation does not
model page placement and routing. Rather, it models page
capacity and a fixed network delay between pages. We refer
the reader to [20] for more details on simulation, scheduling,
and these application results.

Figures 4 and 6 demonstrate several interesting properties
of SCORE and of the quasi-static schedulers. First, these
results demonstrate that application performance scales
predictably across hardware sizes. More hardware means
shorter run-times. Second, these results demonstrate that

and 5 (also between 6 and 7) in the performance of the “exhaustive”
quasi-static scheduler. The disparity is due to different accounting
of overheads and is negligible for all but the smallest device sizes.

time-multiplexing is highly efficient for these applications,
in the sense that each application can run on substantially
fewer compute pages than there are page threads, with
negligible performance loss (this is analogous to efficiency
in virtual memory, which allows some programs to run in
smaller memory with negligible performance loss). Each
application, as implemented, has limited parallelism that
requires some threads to be idle some of the time—a
time-multiplexed schedule can avoid loading such threads
into idle hardware. Third, these results show that
simple, heuristic schedulers based on stream data-flow
topology (“topological,” “min-cut”) perform almost as
well an exhaustive search to directly minimize idle cycles
(“exhaustive”).

Figures 5 and 7 compare application run times under
dynamic, static, and quasi-static scheduling approaches. We
find that static scheduling generally outperforms dynamic
scheduling, owing in part to better analysis and in part to
the lower run-time overhead of computing schedules off-line.
We also find that quasi-static scheduling outperforms the
pure static and dynamic approaches, typically by a factor
of 2–4. This performance improvement owes entirely to
the addition of a single dynamic feature, namely the ability
to advance the static schedule when all compute pages are
blocked.

The quasi-static schedulers presently attain hardware
utilization (non-idle page-cycles) of up to 50%. This limit
seems to be due to I/O rate mismatches among scheduled
threads leading to input starvation and/or buffer overflows.
Future work includes scheduling to run rate-matched
threads together and rate-mismatched threads in different
time slices. Compiler transformations may also be used
to intentionally change thread I/O rates, e.g. using serial
arithmetic.

5. SCORE FOR PROCESSOR
ARCHITECTURES

The SCORE architecture developed above can be easily
extended with additional processor types. We have
already defined three processor types: CP, CMB, and
microprocessor. An extended architecture might use
specialized function units (ALUs, FFT units, etc.), DSPs,
or additional microprocessors. Each processor must have a
stream network interface with ability to stall the processor.
The network fabric is completely abstracted by the stream
network interface.

Streams can be added to a microprocessor as a
clean architectural feature, resembling a memory
interface. The instruction set is extended with
load/store-like operations: stream read(register,index)
and stream write(register,index), where index enumerates
the space of streams (like a memory address), and register
denotes a value register. Stream reads must be able to
stall the processor (like memory wait states), while stream
writes can resume immediately (like memory stores to a
write buffer). These features can be handled by stream
access units, resembling memory load/store units, even
with out-of-order issue. These units must transparently
route stream accesses either to a network interface or to
memory buffers. Stream state (“live” or “buffered”) and

uP

I$

D$

 Memory
 and
DMA Ctrl

SID PID Location

SLB

Array Control

External
Memory

Figure 8: Hypothetical microprocessor with stream
support, controlling a reconfigurable array

buffer locations can be stored in a stream table (analogous
to a VM page table) and cached in a TLB-like stream
look-aside buffer (SLB). The SLB enables single-cycle
access to common streams and handles uncommon streams
by trapping and being updated. Access protection can be
added using a process ID in the stream table. Finally,
stalled stream accesses should time out after a while,
allowing a scheduler to swap out blocked threads. Figure 8
illustrates the hardware components for a microprocessor
with stream support. Note that many of the necessary
features could be emulated on a conventional microprocessor
using memory mapping or a co-processor interface, plus an
external controller to route stream accesses to a network or
to buffer memory.

The scheduling policies for reconfigurable hardware are
easily adapted to multi-processor and multi-threaded
processor architectures, provided I/O operations are as
fast as memory operations. A chip multi-processor
would be scheduled like a SCORE architecture with only
microprocessors. A multi-threaded processor would be
scheduled similarly, treating each hardware thread context
as a separate SCORE processor. Communication between
threads loaded in hardware would be “live” through
registers, whereas communication to threads swapped-out
to memory would be buffered in memory. In either case, the
scheduler prefers to co-schedule communicating threads.

6. SUMMARY
SCORE is a multi-threaded compute model built from the
ground up with communication in mind to support software
scalability and longevity on high capacity hardware. The
model uses streams, i.e. FIFO channels with blocking read,
as the only method of inter-thread communication and
synchronization. Exposing the inter-thread dependencies
allows highly flexible and efficient thread scheduling that
can be tailored to available hardware, separately from
thread compilation. Exposing streams as an architectural
abstraction allows compiled programs to automatically
benefit from additional compute and communication
resources on future devices. We have demonstrated
SCORE for reconfigurable hardware, which decouples a
logic design from its target device size and enables
binary compatibility and performance scaling on larger
devices. Within that framework, we have developed several
schedulers and have demonstrated heuristics that perform
nearly as well as exhaustive search scheduling. We have

also proposed architectural support for SCORE streams on
microprocessors. Finally, we note that SCORE extends
naturally to large, heterogeneous systems, provided that
every component has a compatible stream interface.

7. ACKNOWLEDGEMENTS
This research is part of the Berkeley Reconfigurable
Architectures, Software, and Systems (BRASS) effort
supported by the Defense Advanced Research Projects
Agency (DARPA) contract DABT63-C-0048, by the
California MICRO Program, and by ST Microelectronics.

8. ADDITIONAL AUTHORS
Randy Huang, Yurym Markovskiy, Joseph Yeh

9. REFERENCES
[1] Arthur Abnous and Jan Rabaey. Ultra-low-power

domain-specific multimedia processors. In Proceedings
of the IEEE VLSI Signal Processing Workshop
(VSP’96), October 1996.

[2] Anant Agarwal, Ricardo Bianchini, David Chaiken,
Kirk L. Johnson, David Kranz, John Kubiatowicz,
Beng-Hong Lim, Kenneth Mackenzie, and Donald
Yeung. The mit alewife machine: Architecture and
performance. In In Proceedings of the 22nd
International Symposium on Computer Architecture,
1995.

[3] Arvind and R. A. Ianucci. Two fundamental issues in
multiprocessing. In Proceedings of DFVLR Conference
on Parallel Processing in Science and Engineering,
pages 61–88, West Germany, June 1987.

[4] Shuvra S. Bhattacharyya, Praveen K. Murthy, and
Edward A. Lee. Software Synthesis from Dataflow
Graphs, chapter Synchronous Dataflow. Kluwer
Academic Publishers, 1996.

[5] Vincent Michael Bove, Jr. and John A. Watlington.
Cheops: A reconfigurable data-flow system for video
processing. IEEE Transactions on Circuits and
Systems for Video Technology, 5(2):140–149, April
1995. <http://wad.www.media.mit.edu/people/wad/
cheops_CSVT/cheops.html>.

[6] Joseph T. Buck. Scheduling Dynamic Dataflow Graphs
with Bounded Memory using the Token Flow Model.
PhD thesis, University of California, Berkeley, 1993.
ERL Technical Report 93/69.

[7] Eylon Caspi, Michael Chu, Randy Huang, Nicholas
Weaver, Joseph Yeh, John Wawrzynek, and André
DeHon. Stream computations organized for
reconfigurable execution (SCORE): Introduction and
tutorial. <http://www.cs.berkeley.edu/projects/
brass/documents/score_tutorial.html>, short
version appears in FPL’2000 (LNCS 1896), 2000.

[8] David E. Culler, Seth C. Goldstein, Klaus E. Schauser,
and Thorsten von Eicken. Tam — a compiler
controlled threaded abstract machine. Journal of
Parallel and Distributed Computing, June 1993.

[9] William J. Dally et al. The message-driven processor:
A multicomputer processing node with efficient
mechanisms. IEEE Micro, pages 23–39, April 1992.

[10] Jack B. Dennis. Data flow supercomputers. Computer,
13:48–56, November 1980.

[11] Thorsten von Eicken et al. Active messages: a
mechanism for integrated communication and
computation. In Proceedings of the 19th Annual
Symposium on Computer Architecture, Queensland,
Australia, May 1992.

[12] Marco Fillo, Stephen W. Keckler, William J. Dally,
Nicholas P. Carter, Yevgeny Gurevich Andrew Chang,
and Whay S. Lee. The M-machine multicomputer. In
Proceedings of the 28th Annual International
Symposium on Microarchitecture, Ann Arbor, MI,
1995.

[13] C. A. R. Hoare. Communicating Sequential Processes.
International Series in Computer Science.
Prentice-Hall, 1985.

[14] Intel microprocessor quick reference guide. http:
//www.intel.com/pressroom/kits/quickref.htm.

[15] G. Kahn. Semantics of a simple language for parallel
programming. Info. Proc., pages 471–475, August
1974.

[16] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John
Heinlein, Richard Simoni, Kourosh Gharachorloo,
John Chapin, David Nakahira, Joel Baxter, Mark
Horowitz, Anoop Gupta, Mendel Rosenblum, and
John Hennessy. The stanford flash multiprocessor. In
Proceedings of the 21st International Symposium on
Computer Architecture, pages 302–313, April 1994.

[17] E. A. Lee and T. M. Parks. Dataflow process
networks. Proc. IEEE, 83(5):773–801, May 1995.

[18] Whay Sing Lee, William J. Dally, Stephen W. Keckler,
Nicholas P. Carter, and Andrew Chang. Efficient
protected message interface in the MIT M-machine.
IEEE Computer, 31(11):69–75, November 1998.

[19] Daniel Lenoski, James Laudon, Kourosh
Gharachorloo, Wolf-Dietrich Weber, Anoop Gupta,
and John Hennessy. Overview and status of the
stanford dash multiprocessor. In Norihisa Suzuki,
editor, Proceedings of the International Symposium on
Shared Memory Multiprocessing, pages 102–108.
Information Processing Society of Japan, April 1991.

[20] Yury Markovskiy, Eylon Caspi, Randy Huang, Joseph
Yeh, Michael Chu, André DeHon, and John
Wawrzynek. Analysis of quasi-static scheduling
techniques in a virtualized reconfigurable machine. In
Proceedings of the Tenth International Symposium on
Field-Programmable Gate Arrays (FPGA 2002),
February 2002.

[21] Charles L. Seitz. Mosaic C: An experimental fine-grain
multicomputer. In A. Bensoussan and J.-P. Verjus,
editors, Future Tendencies in Computer Science,
Control and Applied Mathematics: Internantional
Conference on the Occasion of the 25th Anniversary of
INRIA, pages 69–85. Sprinter-Verlag, December 1992.

[22] William Tsu, Kip Macy, Atul Joshi, Randy Huang,
Norman Walker, Tony Tung, Omid Rowhani,
Varghese George, John Wawrzynek, and André
DeHon. HSRA: High-speed, hierarchical synchronous
reconfigurable array. In Proceedings of the
International Symposium on Field Programmable Gate
Arrays, pages 125–134, February 1999.

[23] John A. Watlington. MagicEight: An architecture for
media processing and an implementation. Thesis
proposal, MIT Media Laboratory, January 1999.
<http://wad.www.media.mit.edu/people/wad/tp/>.

