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Reconfigurable Computing is emerging as an important new orga-
nizational structure for implementing computations. It combines
the post-fabrication programmability of processors with the spatial
computational style most commonly employed in hardware de-
signs. The result changes traditional “hardware” and “software”
boundaries, providing an opportunity for greater computational ca-
pacity and density within a programmable media. Reconfigurable
Computing must leverage traditional CAD technology for building
spatial designs. Beyond that, however, reprogrammablility intro-
duces new challenges and opportunities for automation, including
binding-time and specialization optimizations, regularity extraction
and exploitation, and temporal partitioning and scheduling.
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Traditionally, we either implemented computations in hardware
(e.g. custom VLSI, ASICs, gate-arrays) or we implemented them
in software running on processors (e.g. DSPs, microcontrollers,
embedded or general-purpose microprocessors). More recently,
however, Field-Programmable Gate Arrays (FPGAs) introduced a
new alternative which mixes and matches properties of the tradi-
tional hardware and software alternatives. Machines based on these
FPGAs have achieved impressive performance [1] [11] [4]—often
achieving 100 � the performance of processor alternatives and 10-
100 � the performance per unit of silicon area.

Using FPGAs for computing led the way to a general class
of computer organizations which we now call reconfigurable com-
puting architectures. The key characteristics distinguishing these
machines is that they both:

� can be customized to solve any problem after device fabrica-
tion

� exploit a large degree of spatially customized computation in
order to perform their computation

This class of architectures is important because it allows the com-
putational capacity of the machine to be highly customized to the
instantaneous needs of an application while also allowing the com-
putational capacity to be reused in time at a variety of time scales. As

single-chip silicon die capacity grows, this class of architectures be-
comes increasingly viable, since more tasks can be profitably imple-
mented spatially, and increasingly important, since post-fabrication
customization is necessary to differentiate products, adapt to stan-
dards, and provide broad applicability for monolithic IC designs.

In this tutorial we introduce the organizational aspects of re-
configurable computing architectures, and we relate these recon-
figurable architectures to more traditional alternatives (Section 2).
Section 3 distinguishes these different approaches in terms of in-
struction binding timing. We emphasize an intuitive appreciation
for the benefits and tradeoffs implied by reconfigurable design
(Section 4), and comment on its relevance to the design of future
computing systems (Section 6). We end with a roundup of CAD
opportunities arising in the exploitation of reconfigurable systems
(Section 7).
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When implementing a computation, we have traditionally decided
between custom hardware implementations and software imple-
mentations. In some systems, we make this decision on a subtask by
subtask basis, placing some subtasks in custom hardware and some
in software on more general-purpose processing engines. Hardware
designs offer high performance because they are:

� customized to the problem—no extra overhead for inter-
pretation or extra circuitry capable of solving a more general
problem

� relatively fast—due to highly parallel, spatial execution

Software implementations exploit a “general-purpose” execution
engine which interprets a designated data stream as instructions
telling the engine what operations to perform. As a result, software
is:

� flexible—task can be changed simply by changing the in-
struction stream in rewriteable memory

� relatively slow—due to mostly temporal execution

� relatively inefficient–since operators can be poorly matched
to computational task

Figure 1 depicts the distinction between spatial and temporal
computing. In spatial implementations, each operator exists at a
different point in space, allowing the computation to exploit paral-
lelism to achieve high throughput and low computational latencies.
In temporal implementations, a small number of more general com-
pute resources are reused in time, allowing the computation to be
implemented compactly. Figure 3 shows that when we have only
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Figure 1: Spatial versus Temporal Computation for the expression A1E A > 2 @ B >1@ C
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Figure 2: Spatially Configurable Implementation of expression A&E A > 2 @ B >F@ C
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Figure 3: Coarse Design Space for Computing Implementations

these two options, we implicitly connect spatial processing with
hardware computation and temporal processing with software.

The key benefit of FPGAs, and more broadly reconfigurable
devices, is that they introduce a class of post-fabrication config-
urable devices which support spatial computations, thus giving us
a new organizational point in this space (Figure 3). Figure 2 shows
a spatially configurable computation for comparison with Figure 1.
Reconfigurable devices have the obvious benefit of spatial paral-
lelism, allowing them to perform more operations per cycle. As we
will see in Section 4, the organization has inherent density advan-
tages over traditional processor designs. As a result, reconfigurables
can often pack this greater parallelism into the same die area as a
modern processor.
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Instruction binding time is an important distinction amongst these
three broad classes of computing media which helps us understand
their relative merits. That is, in every case we must tell the compu-
tational media how to behave, what operation to perform and how
to connect operators. In the pre-fabrication hardware case, we do
this by patterning the devices and interconnect, or programming,
the device during the fabrication process. In the “software” case,
after fabrication we select the proper function from those supported
by the silicon. This is done with a set of configuration bits, an
instruction, which tells each operator how to perform and where
to get its input. In purely spatial software architectures, the bits
for each operator can be defined once and will then be used for
a long processing epoch (Figure 2). This allows the operators to
store only a single instruction local to the compute and interconnect
operators. In temporal software architectures, the operator must
change with each cycle amongst a large number of instructions in
order to implement the computation as a sequence of operations on
a small number of active compute operators. As a result, the spatial
designs must have high bandwidth to a large amount of instruc-
tion memory for each operator (as shown in Figures 1). Figure 4
shows this continuum from pre-fabrication operation binding time
to cycle-by-cycle operation binding.

Early operation binding time generally corresponds to less im-
plementation overhead. A fully custom design can implement only
the circuits and gates needed for the task; it requires no extra mem-
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ory for instructions or circuitry to perform operations not needed
by a particular task. A gate-array implementation must use only
pre-patterned gates; it need only see the wire segments needed for
a task, but must make do with the existing transistors and transistor
arrangement regardless of task needs. In the spatial extreme, an
FPGA or reconfigurable design needs to hold a single instruction;
this adds overhead for that instruction and for the more general
structures which handle all possible instructions. The processor
needs to rebind its operation on every cycle, so it must pay a large
price in instruction distribution mechanism, instruction storage, and
limited instruction semantics in order to support this rebinding.

On the flip side, late operation binding implies an opportunity
to more closely specialize the design to the instantaneous needs of a
given application. That is, if part of the data set used by an operator
is bound later than the operation is bound, the design may have to
be much more general than the actual application requires. For a
common example, consider digital filtering. Often the filter shape
and coefficients are not known until the device is deployed into a
specific system. A custom device must allocate general-purpose
multipliers and allocate them in the most general manner to support
all possible filter configurations. An FPGA or processor design can
wait until the actual application requirements are known. Since the
particular problem will always be simpler, require less operations,
than the general case, these post-fabrication architectures can ex-
ploit their late binding to provide a more optimized implementation.
In the case of the FPGA, the filter coefficients can be built into the
FPGA multipliers reducing area [2]. Specialized multipliers can
be one-fourth the area of a general multiplier, and particular spe-
cialized multipliers can be even smaller, depending on the constant.
Processors without hardwired multipliers can also use this trick
[6] to reduce execution cycles. If the computational requirements
change very frequently during operation, then the processor can
use its branching ability to perform only the computation needed at
each time. Modern FPGAs, which lack support to quickly change
configurations, can only use their reconfiguration ability to track
run-time requirement changes when the time scale of change is rel-
ative large compared to their reconfiguration time. For conventional
FPGAs, this reconfiguration time scale is milliseconds, but many
experimental reconfigurable architectures can reduce that time to
microseconds.
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As we have established, instructions are the distinguishing features
of our post-fabrication device organizations. Mapping out this de-
sign space, instruction organization plays a large role in defining
device density and device efficiency. Two important parameters for
characterizing designs in this space are datapath width and instruc-
tion depth.
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How many compute operators at the bit-

level are controlled with a single instruction in SIMD form? In
processors, this shows up as the ALU datapath width (e.g.

Y E 32
and 64), since all bits in the word must essentially perform the same
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Figure 5: Datapath Width � Instruction Depth Architectural Design
Space

operation on each cycle and are routed in the same manner to and
from memory or register files. For FPGAs, the datapath width is
one (

Y E 1) since routing is controlled at the bit level and each
FPGA operator, typically a single-output Lookup-Table (LUT), can
be controlled independently.

Sharing instructions across operators has two effects which re-
duce the area per bit operator:� amortizes instruction storage area across several operators� limits interconnect requirements to word level
However, when the SIMD sharing width is greater than the native
operation width, the device is not able to fully exploit all of its
potential bit operators. Since a group of

Y
bits must all do the

same thing and be routed in the same direction, smaller operations
will still consume

Y
bit operators even though some of the datapath

bits are performing no useful work. Note that segmented datapaths,
as found in modern multimedia instructions (e.g. MMX [7]) or
multiguage architectures [10], still require that the bits in a wide-
word datapath perform the same instruction in SIMD manner.
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How many device-wide instructions do

we store locally on the chip and allow to change on each operating
cycles? As noted, FPGAs store a single instruction per bit operator
(
` E 1) on chip allowing them to keep configuration overhead to a

minimum. Processors typically store a large number of instructions
on chip (

` E 1000–100,000) in the form of a large instruction
cache. Increasing the number of on chip instructions allows the
device capacity to be used instantaneously for different operations
at the cost of diluting the area used for active computation and hence
decreasing device computational density.

Figure 5 shows where both traditional and reconfigurable or-
ganizations lie in this slice of the post-fabrication design space.
Figure 6 shows the relative density of computational bit operators
based on architectural parameters (see [3] for model details and
further discussion). Of course, even the densest point in this post-
fabrication design space is less dense than custom a pre-fabrication
implementation of a particular task due to the overhead for gener-
ality and instruction configuration.

The peak operator density shown in Figure 6 is obtainable only
if the stylistic restrictions implied by the architecture are obeyed.
As noted, if the actual data width is smaller than the architected data
width, some bit operators cannot be used. Similarly, if a task has
more cycle-by-cycle operation variance than supported by the archi-
tecture, operators can sit idle during operational cycles contributing
to a net reduction in usable operator density. Figure 8 captures these
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effects in caricature by looking at the efficiency of processor and
FPGA architectures across different task requirements.

In summary, the benefits of reconfigurable architectures are:

1. greater computational density than temporal processors
2. greater semantic power, fine grained control over bit operators,

for narrow word machines
3. reuse of silicon area on coarse-grain time scales
4. the ability to specialize the implementation to instantaneous

computational requirements, minimizing the resources actually
required to perform a computation
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Large computing tasks are often composed of subtasks with differ-
ent stylistics requirements. As we see in Figure 8,both purely FPGA
and purely processor architectures can be very inefficient when run-
ning tasks poorly matched to their architectural assumptions. By
a similar consideration, a post-fabrication programmable device,
spatial or temporal, can be much less efficient than a pre-fabrication
device which exactly solves a required computing task. Counter-
wise, a pre-fabrication device which does not solve the required
computing can be less efficient than a post-fabrication device. Con-
sider, for example, a custom floating-point multiplier unit. While
this can be 20 � the performance density of an FPGA implemen-
tation when performing floating-point multiplies, the floating-point
multiplier, by itself, is useless for motion estimation.

These mixed processing requirements drive interest in hetero-
geneous “general-purpose” and “application-specific” processing
components which incorporate subcomponents from all the cate-
gories shown in Figure 3. In terms of binding time, these compo-
nents recognize that a given application or application set has a range
of data and operation binding times. Consequently, these mixed de-
vices provide a collection of different processing resources, each
optimized for handling data bound at a different operational time
scale. Figure 7 shows an architecture mixing spatial and tempo-
ral computing elements; example components exhibiting this mix
include Triscend’s E5, National Semiconductor’s NAPA [9], and
Berkeley’s GARP [5]. Berkeley’s Pleiades architecture combines
custom functional units in a reconfigurable network with a con-
ventional processor for configuration management and operation
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Figure 7: Heterogeneous Post-Fabrication Computing Device in-
cluding Processor, Reconfigurable Array, and Memory

sequencing [8]. Mixing custom hardware and temporal processor
on ASICs is moderately common these days. Since reconfigurable
architectures offer complementary characteristics, there are advan-
tages to adding this class of architectures to the mix, as well.
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Two major trends demand increased post-fabrication programma-
bility.
1. greater single chip capacity
2. shrinking product lifetimes and short time to market windows

k#��$6����$����]����J�5 $&
'Q���3f
)�"3���
����/j
Large available, single-chip sili-

con capacity drives us towards greater integration yielding System-
on-a-Chip designs. This integration makes sense to reduce system
production and component costs. At the same time, however, sys-
tem designers loose the traditional ability to add value and differ-
entiate their systems by post-fabrication selection of components
and integration. As a result, monolithic System-on-a-Chip designs
will require some level of post-fabrication customization to make
up for “configuration” which was traditionally done at the board
composition level.

Further, the larger device capacity now makes it feasible to im-
plement a greater variety of tasks in a programmable media. That is,
many tasks, such as video processing, which traditionally required
custom hardware to meet their demands can now be supported on
single-chip, post-fabrication media. The density benefit of recon-
figurable architectures helps expands this capacity and hence the
range of problems for which post-fabrication solutions are viable.
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Post-fabrication customizable parts

allow system designers to get new ideas into the market faster. They
eliminate the custom silicon design time, fabrication time, and man-
ufacturing verification time. The deferred operation binding time
also reduces the risk inherent in custom design; the customization
is now in software and can be upgraded late in the product devel-
opment life cycle. In fact, the late binding time leaves open the
possibility of “firmware” upgrades once the product is already in
the customer’s hands. As markets and standards evolve the behav-
ior and feature set needed to maintain a competitive advantage over
competitors changes. With post-fabrication devices, much of this
adaptation can be done continually, decoupling product evolution
to please market requirements from silicon design spins.
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Figure 8: Yielded Efficiency across Task–Architecture Mismatches
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Reconfigurable architectures allow us to achieve high performance
and high computational density while retaining the benefits of a
post-fabrication programmable architecture. To fully exploit this
opportunity, we need to automate the discovery and mapping pro-
cess for reconfigurable and heterogeneous devices.

Since reconfigurable designs are characteristicly spatial, tradi-
tional CAD techniques for logical and physical design (e.g. logic
optimization, retiming, partitioning, placement, and routing) are
essential to reconfigurable design mapping. Three things differ:

1. Some problems take on greater importance–e.g. since pro-
grammable interconnect involves programmable switches,
the delay for distant interconnect is a larger contribution
to path delay than in custom designs; also, since latencies
are larger than in custom designs and registers are relatively
cheap, there is a greater benefit for pipelining and retiming.

2. Fixed resource constraints and fixed resource ratios–in
custom designs, the goal is typically to minimize area usage;
with a programmable structure, wires and gates have been
pre-allocated, so the goal is to fit the device into the available
resources.

3. Increased demand for short tool runtimes–while hardware
CAD tools which run for hours or days are often acceptable,
software tools more typically run for seconds or minutes. As
these devices are increasingly used to develop, test, and tune
new ideas, long tool turn-around is less acceptable. This
motivates a better understanding of the tool run-time versus
design quality tradeoff space.

The raw density advantage of reconfigurable components results
from the elimination of overhead area for local instructions. This
comes at the cost of making it relatively expensive to change the
instructions. To take advantage of this density, we need to:

1. Discover regularity in problem–the regularity allows us to
reuse the computational definition for large number of cycles
to amortize out any overhead time for instruction reconfigu-
ration.

2. Transform problem to expose greater commonality– trans-
formations which create regularity will increase our opportu-
nities to exploit this advantage.

3. Schedule to exploit regularity–when we exploit the oppor-
tunity to reuse the substrate in time to perform different com-
putations, we want to schedule the operations to maximize
the use of each configuration.

As noted in Section 3, a programmable computation needs only
support its instantaneous processing requirements. This gives us
the opportunity to highly specialize the implemented computation
to the current processing needs, reducing resource requirements,
execution time, and power. To exploit this class of optimization,
we need to:

1. Discover binding times–early bound and slowly changing
data become candidates for data to be specialized into the
computation.

2. Specialize implementations–fold this early bound data into
the computation to minimize processing requirements.

3. Fast, online algorithms to exploit run-time specialization–
for data bound at runtime, this specialization needs to occur
efficiently during execution; this creates a new premium for
lightweight optimization algorithms.

The fixed capacity of pre-fabrication devices requires that we
map our arbitrarily large problem down to a fixed resource set.
When our device’s physical resources are less than the problem
requirements, we need to exploit the device’s capacity for tempo-
ral reuse. We can accomplish this “fit” using a mix of several
techniques:

1. Temporal x spatial assignment–on heterogeneous devices
with both processor and reconfigurable devices, we can use
techniques like hardware-software partitioning to utilize the
available array capacity to best accelerate the application,
while falling back on the density of the temporal processor to
fit the entire design onto the device.



2. Area-time tradeoff–most compute tasks do not have a single
spatial implementation, but rather a whole range of area-time
implementations. These can be exploited to get the best
performance out of a fixed resource capacity.

3. Time-slice schedule–since the reconfigurable resources can
be reused, for many applications we can break the task into
spatial slices and process these serially on the array; this
effectively virtualizes the physical resources much like phys-
ical memory and other limited resources are virtualized in
modern processing systems.

In general, to handle compute tasks with dynamic processing re-
quirements, we need to perform run-time resource management,
making a run-time or operating system an integral part of the com-
putational substrate. This, too, motivates fast online algorithms
for scheduling, placement, and, perhaps, routing, to keep scheduler
overhead costs reasonable small.
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Reconfigurable computing architectures complement our existing
alternatives of temporal processors and spatial custom hardware.
They offer increased performance and density over processors while
remaining post-fabrication configurable. As such, they are an im-
portant new alternative and building block for all kinds of compu-
tational systems.
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