ISSCC99/SESSION 21/PAPER WA21.2/pp. 362-363

Trends toward Spatial Computing Architectures

André DeHon

University of California at Berkeley, Berkeley, CA, USA

Figure 1 shows the peak computation offered per
unit silicon for RISC processors and FPGAs over the
past couple of decades. Advances in processor archi-
tecture have allowed us to mostly turn additional sil-
icon area into additional performance. The time unit
(seconds) is absolute, not normalized to process, so
this does represent some actual sacrifice of the increas-
ing capabilities provided by the fabrication process to
the design process, more complicated architectures,
and increasing memory imbalance.

Also shown in Figure 1 is the peak computational
density for FPGAs. This shows at least a 10x gap in
raw density between the processor architectures and
the FPGAs.

What does this show and what does 1t mean for the
design of post-fabrication, programmable computing
devices? Figure 3 shows a simplified model of the ar-
chitecture space in which these devices are designed.[5]
The key feature highlighted here is the way process-
ing units are controlled by instructions. We can vary
the number of processing units which use the same in-
struction in SIMD fashion by varying the word width
(w). We can also vary the number of different behav-
iors which are readily available for the programmable
processing units by controlling the instruction depth
(¢). In a similar manner, we can vary the amount
of data retimed within the computational structure
by varying the data depth (d) [not shown]. Figure 2
shows the dramatic effect which these parameters can
have on raw computational density.

In the mid 1980’s when we had 50MA? dies, the
designer had to choose between (1) instruction stores
rich enough to support “large” subcomputations on
the computational die and (2) larger numbers of ac-
tive compute operators with finer-grain control. Pri-
mary examples of this tradeoff where the MIPS-X
which offered a 32b ALU with 512 on-chip instructions
[7], and Xilinx’s XC2064 [2] which offered 64 4-LUTs
(600-1000 programmable gates) on a chip. At this
point in time, few problems had such small kernels
that the entire computation could be built spatially
on the FPGA device. Many important computations
could fit in the 512 instruction cache for the proces-
sor. Spatial computing at this point suffered from (1)
latency and bandwidth penalties for die crossings and
(2) large costs in silicon area to realize any reasonably
sized computation. That is, in order to pack large
computations onto the limited die space available, it
was necessary to reuse the programmable processing
elements heavily and store the instructions and data

for the computation compactly in large, dense memo-
ries.

In the late ’90’s, the growth in silicon die capacity
has changed the picture. We can put 7,000 4-LUTs
(100K gates) on a few GA? die. The computations and
data which could only fit on a single-chip implemen-
tation by sequentially reusing a single CPU a decade
earlier can be fully implemented in spatial dataflow on
a single FPGA today. The advantage to these spatial
implementations is the greater computational density
shown in Figure 1. In the same area, the processors
now hold 50-100K instruction and data words on chip
and execute on a small number of 64b processing units.

Figure 4 compares the efficiency of the processor
and FPGA resource allocation under the simple model
above. Here, cycle length [can be taken as the criti-
cal path cycle length for a recurrence computation or
simply the necessary multiplexing factor to achieve a
target throughput rate. Design w is the application
word width; Increasingly, we are seeing that the wide
processor word widths are not well matched to applica-
tion processing requirements. The comparison under-
scores the fact that the processors and the FPGA are
at different points in the architecture space, efficient
for different sets of requirements. When die space was
precious, the heavy multiplexing of the processor was
necessary in order to fit the problem onto the avail-
able silicon area at all. With larger dies, architectures
which keep the processor distribution of memory and
compute are inefficient for high throughput computa-
tional tasks.

Now that we have grown to 10GA? dies and see
ITA? dies on the horizon, both extremes (single in-
struction, bit-level control and deep instruction, wide-
word control) in this design space make sense for dif-
ferent sets of application needs. Beyond that, how-
ever, is a large intermediate design space and room
for hybrid designs.

By storing a few instruction locally in a traditional
FPGA array, one can pack instructions more deeply
onto the die without substantially decreasing compu-
tational density (e.g. MIT DPGA [4]). Taking this
idea to an extreme, one can achieving processor-like
instruction density (University of Toronto’s VEGA
[8]), but at a large cost in computational density.
Using 16b words and shallow (8 deep) data and in-
structions, UCB’s PADDI [3] and PADDI-2 [12] han-
dle high-throughput, 16b DSP-oriented computations
more efficiently than traditional DSP architectures.

ISSCC99/SESSION 21/PAPER WA21.2/pp. 362-363

This is a direct case of trading memory die area for
greater active computing area, and the resulting ar-
chitectures are very efficient for high data rate filter-
ing applications. At the extreme of very wide word
widths, MIT’s Abacus [1] controls 1024 STMD process-
ing units with each instruction, achieving 3x the com-
putational density of even modern FPGAs for such
wide SIMD problems. MIT’s MATRIX architecture
[9] uses 8b RF-ALU building blocks, allowing the ap-
plication to drive some of its own tradeoff between in-
struction, data, and computing resources; it sacrifices
some of the peak density exhibited by FPGAs and
SIMD arrays for more robust yield of computational
power over a broader application spectrum.

Full applications tend to have a mix of processing
requirements. As we see here the architectural design
space is broad. As we move to 100G-1TA? system-
on-a-chip dies, hybrid components which mix multi-
ple design points onto a single IC become promising.
Reviewing Figure 4, notice that the processor and the
FPGA are both less than 1% efficient at their cross
points, suggesting a hybrid device dedicating half the
area of the chip to each would be more efficient on
many applications than a homogeneous die with ei-

ther architecture. Exploiting our common 90/10 rule
of thumb, the small fraction of the code which ac-
counts for most of the computing time can be han-
dled on the spatial portion of the die, while the large
remaining portion of the computation can be imple-
mented compactly using the more traditional proces-
sor organization. This is the basic motivation behind
Harvard’s PRISC [10], UCB’s GARP [6], and National
Semiconductor’s NAPA [11], designs which couple a
datapath computing array for regular computational
tasks along with a RISC processing core for control
and less frequently executed tasks.

A decade ago when IC space was a premium,
versatility and programmability virtually required a
processor-like architecture with heavily multiplexed
and reused datapaths. Now that IC capacities have
grown 1000x, the space of alternative programmable
architectures is much broader and more interesting.
For many applications, more spatially oriented com-
puting architectures will offer greater performance
per unit area while retaining the benefits of post-
fabrication programmability. This trend goes hand-
in-hand with the greater space available and should
continue to broaden as die sizes grow.

References

[1] Michael Bolotski, Thomas Simon, Carlin Vieri,
Rajeevan Amirtharajah, and Thomas F. Knight
Jr. Abacus: A 1024 processor 8ns simd array. In
Advanced Research in VLSI 1995, 1995.

[2] William S. Carter, Khue Duong, Ross H. Free-
man, Hung-Cheng Hsieh, Jason Y. Ja, John E.
Mahoney, Luan T. Ngo, and Shelly L. Sze. A
user programmable reconfigurable logic array. In
IEEE 1986 Custom Integrated Circuits Confer-
ence, pages 233-235. IEEE, May 1986.

[3] Dev C. Chen and Jan M. Rabaey.
figurable multiprocessor ic for rapid prototyp-
ing of algorithmic-specific high-speed dsp data
paths. IEEE Journal of Solid-State Circuits,
27(12):1895-1904, December 1992.

[4] André DeHon. Dpga utilization and applica-
tion. In Proceedings of the 1996 International
Symposium on Field Programmable Gate Arrays.
ACM/SIGDA, February 1996. Extended version
available as Transit Note #129 <http://www.ai.
mit.edu/projects/transit/transit-notes/
tnl129.ps.Z>.

A recon-

5] André DeHon. Reconfigurable architectures for
g
general-purpose computing. Al Technical Report

1586, MIT Artificial Intelligence Laboratory, 545
Technology Sq., Cambridge, MA 02139, October
1996.

[6] John R. Hauser and John Wawrzynek. Garp: A
mips processor with a reconfigurable coprocessor.
In Proceedings of the IEEE Symposium on Field-
Programmable Gate Arrays for Custom Comput-
ing Machines, pages 12-21. IEEE, IEEE, April
1997.

[7] Mark Horowitz, John Hennessy, Paul Chow,
Glenn Gulak, John Acken, Anant Agarwal,
Chorng-Yeung Chu, Scott McFarling, Steven
Przybylski, Steven Richardson, Arturo Salz,
Richard Simoni, Don Stark, Peter Steenkiste,
Steven Tjiang, and Malcom Wing. A 32b micro-
processor with on-chip 2k byte instruction cache.
In 1987 IEEE International Solid-State Circuits
Conference, Digest of Technical Papers, pages
30-31. IEEE, February 1987.

[8] David Jones and David Lewis. A time-
multiplexed fpga architecture for logic emulation.
In Proceedings of the IEEE 1995 Custom Inte-
grated Circuits Conference, pages 495-498. IEEE,
May 1995.

ISSCC99/SESSION 21/PAPER WA21.2/pp. 362-363

[9]

Ethan Mirsky and André DeHon. Matrix: A re-
configurable computing architecture with config-
urable instruction distribution and deployable re-
sources. In Proceedings of the IEEE Workshop on
FPGAs for Custom Computing Machines, April
1996.

Rahul Razdan and Michael D. Smith. A high-
performance microarchitecture with hardware-
programmable functional units. In Proceedings of
the 27th Annual International Symposium on Mi-
croarchitecture, pages 172-180. IEEE Computer
Society, November 1994.

[11]

Charlé Rupp, Mark Landguth, Tim Garverick,
Edson Gomersall, Harry Holt, Jeffrey Arnold,
and Maya Gokhale. The napa adaptive processing
architecture. In Proceedings of the IEEE Sym-
postum on FPGAs for Custom Computing Ma-
chines, pages 28-37, April 1998.

Alfred K. Yeung and Jan M. Rabaey. A 2.4 gops
data-drivern reconfigurable multiprocessor ic for
dsp. In Proceedings of the 1995 IEEE Inter-
national Solid-State Circuits Conference, pages

108-109. IEEE, February 1995.

ISSCC99/SESSION 21/PAPER WA21.2/pp. 362-363

Figure 1: Peak Computational Density Figure 2: Relative Peak Density from Model

) A
.g‘é : 4 A R
o 5 -
£
' = = ° o o
El g s 3 e H
g B [J : Y [J
B [J
? - ¢ $ °
1 l [|
0.1 1.0

A SRAM-based FPGAs Technology [A]
® RISC Processors

Figure 3: Model for Programmable Compute Element

Compute blocks tiled into array
Pinst f L 1 —--single issue RISC is
|
|

(CDe?tht) degenerate case of 1x1 tile
ontexts,

(©

.
.

Rent
Parameter

)

Instr. Mem.

Bit Proc.
Units
T
L L
Datapath
Wwidth Interconnect
(w)

Figure 4: Processor and FPGA Area Caricatures

ISSCC99/SESSION 21/PAPER WA21.2/pp. 362-363

Figure 5: Yielded Efficiency for Processor and FPGA Caricature

1.0

Design w 64

128

4
16

64
Path Length

1024

c=d=1,w=1

“‘\““\‘\

Efficiency 0; ““ﬁ

“ % AL
%

128
Design w 64

Path Length

1024

c=d=1024, w = 64
(at 16K Bit Processing Elements)

Figure 6: Application Comparison — FIR Throughput Density

Architecture Reference Feature Area and Time
Size (\) 16b ’2I‘APs 8b ’I2‘APs
228 228
16b DSP Kaneko ISSCC87 0.65um 350MAZ, 50 ns/TAP 0.057 0.057
32b RISC/DSP Nadehara VLSI SP95 0.25um 1.2GA?, 40 ns/TAP 0.021 0.021
64b RISC Gronowski ISSCC96 0.18um 6.8GA2, 2.3 ns/TAP 0.064 0.064
Pentium MMX Choudhury ISSCC97 0.18um 6.6G)\2, 31x3.3 ns/13 TAP 0.019 0.019
MMX AP559
FPGA XC4K 0.60pm 16b — 46 CLBs, 244 ns/8-TAPs 0.57 1.9
Newgard 8b — 240 CLBs, 14.3 ns/8-TAPs
Xilinx Seminar 96 CLB ~1.25M)?
Altera 8K AN96 0.30pm | 8b — 30 LEsx0.92MA?/LE, 10 ns/TAP 3.6
Reconfigurable PADDI2 0.50um 16b — 12 EXUs, 20 ns/TAP 0.39 0.93
ALU Yeung ISSCC95 8b — 5 EXUs, 20 ns/TAP
EXU & 10.7MA?
MATRIX 0.25um 16b — 8 BFUs, 20 ns / TAP 0.22 0.86
Mirsky FCCM96 8b — 2 BFUs, 20 ns/TAP
BFU & 29M)°
Full Custom Ruetz JSSC89 0.75um 400M)\2, 45 ns/64 TAPs 3.6
Golla JSSC90 0.60um 140M)\2, 33 ns/16 TAPs 3.5
Cai CICC90 0.75um 235MA2, 25 ns/4 TAPs 0.68 0.68
(fixed coefficient) Laskowski CICC92 0.60um 114MA?, 6.7 ns/43 TAPs 56 56

