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Abstract

Previous work introduced a dynamic compute model aimed at eliminating existing
barriers to the widespread efficient exploitation of reconfigurable devices. Among
other achievements this model decoupled application design-time decisions from
the run-time physical resource bindings. The compute model uses graphs of com-
pute pages and memory blocks connected by stream links to capture the definition
of a computation abstracted from the detailed hardware size. An automatic run-
time scheduler is a required component in this compute model in that it selects the
temporal sequencing of virtual resources onto the physical device, allocates hard-
ware resources, and configures the device. Although such a scheduler could be
computationally expensive, this work describes a quasi-static scheduling strategy
that dramatically reduces run-time overhead without restricting the full seman-
tic power of the dynamic dataflow graphs. This work describes the quasi-static
scheduling system, analyzes the trade-offs involved in selecting a scheduler imple-
mentation, and highlights critical algorithms. It pays particular attention to the
temporal partitioning of compute graphs and the management of live computation
state.
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Chapter 1

Introduction

As demonstrated in previous works for a variety of applications, reconfigurable
computing devices such as FPGAs can achieve 10x–100x gains in performance
and functional density over microprocessors [DeH96]. Yet microprocessors con-
tinue to be more popular in use due to software compatibility and automatic perfor-
mance scaling across device generations. SCORE addressed these problems with
an abstraction layer analogous to the function of Instruction Set Architecture (ISA)
for processors. It decoupled application design-time decisions from the run-time
physical resource bindings [CCH+00].

This layer of abstraction provides an opportunity for hardware mapping de-
cisions to be deferred to a run-time scheduler, which adapts those decisions to
a specific hardware configuration. Thus without application recompilation or re-
design, a scheduler can enable compatibility and automatic scaling of application
performance across device generations. Unfortunately, run-time scheduling for a
powerful SCORE dynamic programming model could be computationally expen-
sive.

This work presents a novel quasi-static scheduling methodology that contains
the run-time scheduling overhead without restricting the full semantic power of
SCORE. The work analyzes techniques for computation temporal partitioning and
management of live computation state that allow the scheduler to contain device
configuration overheads as well. Together these make virtualized application exe-
cutionefficienton both small and large devices, and provide a scalable system for
generations of hardware.
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Figure 1.1: Hypothetical, single-chip SCORE system.

1.1 SCORE

[CCH+00] presents SCORE (Stream Computations Organized for Reconfigurable
Execution), a system that strives to eliminate existing barriers to the widespread ef-
ficient exploitation of reconfigurable devices. SCORE introduced a compute model
based on paged virtual hardware, which acts in a manner similar to virtual memory.
The paged model provides a framework for device size abstraction, automatic run-
time reconfiguration, binary compatibility among page-compatible devices, and
automatic performance scaling on larger devices without recompilation.

SCORE allows a programmer to describe a computation as a graph ofarbi-
trary sizedoperators that communicate tokens through streams with logically un-
bounded buffering capacity. A high-level language compiler maps a given arbitrary
sized computation into a graph offixed-sizecompute pages constrained by the un-
derlying architecture. In this work, the target hardware is a microprocessor and a
reconfigurable array hybrid shown in Figure 1.1. The array is partitioned intofixed-
sizecompute pages (CPs) and configurable memory blocks (CMBs). The run-time
scheduler time-multiplexes compute pages onto physical CPs and manages buffer
allocation in CMBs. This presents to the user the illusion of unbounded hardware.

SCORE presents several models that define for the developer the expected com-
putational and execution semantics. These models expose varying levels of detail.

SCORE Programming Model. A SCORE computation is described by a data-
flow graph of operators and memory blocks that communicate through streams.
Streams are unidirectional, one producer, one consumer FIFO queues with logi-
cally unbounded depth. The operators consist of a finite state machine (FSM) that
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controls a computational datapath. A FSM consumes data tokens from one or more
inputs, feeds them to the data path and emits the results. Each operator FSM has
a specialdonestate to indicate when a SCORE system can remove it from the
computation.

The memory blocks in the graphs can operate in either sequential or random
access mode. The memory access operations include read, write, or both concur-
rently. The operators communicate with the memory blocksonly through streams.
Depending on the mode, an operator sends an address and/or a data token to the
memory block and receives the data requested. This arrangement avoids race con-
ditions in memory accesses because a stream has only one source.

SCORE operator FSMs and memory blocks have deterministic execution se-
mantics with blocking read and non-blocking write operations, similar to those in
Kahn Process Networks [Kah74]. Operators perform computations and/or a state
transitions only when the tokens on all required inputs are available. This behav-
ior in conjunction with logically unbounded stream depth ensures that execution
correctness is insensitive to stream communication latency. This makes the com-
putation results deterministic and independent of operator ordering in any schedule.

For examples of SCORE applications, refer to Appendix A.
SCORE Execution Model. SCORE graph operators can be of arbitrary size

and thus are unsuitable for direct mapping onto hardware. A high-level compiler
transforms a graph of operators and memory blocks into a graph of compute pages
and memory segments by partitioning and repacking the operators into pages. The
underlying hardware imposes area and I/O bound requirements that the compute
graph page must satisfy. That is, a virtual compute graph page must fit onto a
physical page. The page firing and execution semantics are identical to those in the
operators. They are deterministic and insensitive to stream communication latency.

A high-level compiler converts arbitrarily sized memory blocks into segments
that fit in physical memory blocks on the hardware. Should the user-specified
memory block require more contiguous memory than available on chip, the run-
time system loads only a part of the memory block on chip at any moment of
time. The run-time system services segmentation faults in a manner similar to a
conventional operating system by bringing requested memory pages from off-chip
memory.

The pages and segments communicate only through streams, which in the Ex-
ecution Model have a finite, limited, hardware-specified buffering capacity. The
run-time scheduler uses on-chip memory to expand physical stream capacity as
necessary for a computation to make progress. This creates streams with logical
capacities limited only by the total system memory size.

In SCORE, a compute page is a unit of virtualization. Should the entire compu-
tation be larger than available hardware, the run-time scheduler time-multiplexes
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graph compute pages onto physical compute pages. The content of streams be-
tween any two pages that are not co-resident in hardware is buffered in special
FIFO stitchmemory segments that the scheduler inserts into the compute graph.

SCORE Hardware. The target hardware is a microprocessor and a reconfig-
urable array hybrid (Figure 1.1). The microprocessor executes the run-time sched-
uler and the application control-dominated code. The reconfigurable array executes
the fine-grained regular computations in application kernels. The array is a network
of Compute Pages (CPs) and Configurable Memory Blocks (CMBs). The run-time
scheduler time-multiplexes virtual compute pages on physical CPs and manages
buffer allocation in CMBs to create the illusion of unbounded hardware.

The hardware provides streaming connections with back pressure and data
presence between the CPs and CMBs, decoupling cycle-by-cycle array timing from
the timing of individual pages. Besides facilitating hardware scaling, this relieves
the run-time scheduler from the burden of timing closure on the array. The sched-
uler thus is only responsible for managing coarse grain resources, which include:
• Compute Pages (CPs)consist of programmable lookup tables and registers.

CPs implement the functionality of application compute graph nodes. A com-
pute node is represented by a CP configuration bit-stream and the contents of
its registers and input FIFOs. The scheduler preempts its execution by spilling
the state into memory and resumes its execution by restoring the configuration
and state to a physical CP.
• Configurable Memory Blocks (CMBs)consist of a memory block and a con-

troller that generates addresses and provides asinglestream port from the mem-
ory into the network. Thus while multiple buffers may be allocated in a CMB
concurrently, only one can be active at a time. In addition to stream buffers
for intermediate computation state, CMBs store CP state and configuration bit-
streams. The key benefits of distributed on-chip CMBs include high bandwidth
access to application data and the ability to reconfigure many CPs and CMBs
in parallel.

• Off-chip Memory Access Bandwidth is a scare resource in any integrated
circuit due to the limited number and frequency of off-chip IOs. During ap-
plication execution, input data that resides off chip flows into the array for
processing and computed results flow back. Off-chip memory also stores the
intermediate computation state that does not fit on chip. The scheduler spills
and restores the computation state as necessary at run time.
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1.2 SCORE Scheduling

The separation between the compiler and the run-time scheduler in SCORE is sim-
ilar in purpose to the traditional separation between the function of a compiler
and an operating system. The compiler transforms a high-level representation of
the computation into a binary form suited for configuring individual hardware re-
sources on the array. The scheduler binds and manages those resources at execution
time. This separation delays certain mapping decisions until execution time and
adapts those decisions to the specific hardware configuration. Adapting to differ-
ent device sizes enables application longevity and automatic performance scaling
on next generation hardware.

Restricted dataflow models such as synchronous (SDF), boolean controlled
(BDF) and integer controlled (IDF) data-flow can in many cases employ a purely
static scheduling methodology because they define necessary conditions for graph
consistency and bounds on buffering requirements [BML96, Buc93, Buc94]. In
contrast, SCORE computation graphs, with nodes that are semantically similar to
those in Kahn Process Networks, permit data-dependent token consumption and
emission [Kah74]. This results in dynamic flow rates and in general makes it im-
possible to place static bounds on memory usage. SCORE graphs thusrequire a
run-time scheduler to manage stream buffer sizes to guarantee execution correct-
ness.

Run-time dynamic scheduling can often be computationally expensive making
application execution inefficient. This is because SCORE scheduling and resource
allocation problems are NP-hard. These optimization problems have multiple, si-
multaneous, independent constraints on memory, communication bandwidth and
compute resources. This work presents a quasi-static scheduling methodology that
demonstrates that SCORE graphs can be scheduledefficientlywhile retaining the
full semantic power and expressiveness of the data-dependent dynamic compute
model. This methodology leverages a global rather than greedy view of graph
topology and behavior, and therefore yields results superior to those of dynamic
schedulers.

In addition to containing the scheduling overhead, the quasi-static methodol-
ogy identifies the resource management and allocation strategy that contains the
overhead of time multiplexing. Time multiplexing requires array reconfigurations
and off-chip transfers, both incurring the overheads that must be carefully bal-
anced for application execution to be efficient. An array reconfiguration has a
fixed cost proportional to the size of the device. This cost can be amortized by
running the scheduled portion of an application for a long period of time after each
device reconfiguration. As the application runs, it generates intermediate state that
is buffered in specialstitchsegments allocated in on-chip memory blocks (CMBs).
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Therefore, the stitch segment capacity, which limits the length of each execution
epoch between device reconfigurations, is the key to balancing the two overheads.

Thelargestitch segments enable long execution epochs, which amortize device
reconfiguration overhead. At the same time, these large buffers generate significant
off-chip traffic every time their contents is temporarily spilled off-chip to bring live
state for another part of the computation into limited on-chip memory. In contrast,
smallbuffers allow most or all computation state to fit on chip and reduce or com-
pletely eliminate off-chip traffic. However, small buffers reduce the length of each
execution epoch and do not amortize the overhead of array reconfigurations. Given
these competing effects driving buffer sizing, the goal is to find a solution that min-
imizes the both device configuration and off-chip transfer overheads and therefore
the total application execution time.

This work offers a scalable mapping algorithm that adapts to varying memory
capacities, reconfiguration overheads, and off-chip bandwidths. The quasi-static
scheduler limits the overheads to allow for efficient paged execution.

This report is organized as follows:
Chapter 2: SCORE Schedulingformally defines the scheduling problem and

develops an analytical model relating application performance to architecture re-
configuration costs.

Chapter 3: Quasi-Static Schedulingdescribes in detail the quasi-static sched-
uler and analyzes implementation trade-offs in SCORE scheduling.

Chapter 4: Temporal Partitioning provides an analytical model relating ap-
plication performance to reconfigurable array utilization. It continues with several
temporal partitioning algorithms and evaluates their results.

Chapter 5: Resource Allocationdescribes algorithms and implementation
details for run-time physical resource management and allocation. The chapter
demonstrates the scheduler’s adaptability with application performance results.

1.3 Related Work

1.3.1 Multiprocessors

SCORE graph scheduling has obvious similarities with task scheduling for multi-
processors. The reconfigurable array envisioned in this work consists of a network
of physical compute pages, analogous to the processors in a massively parallel sys-
tem. Similar to consumer-producer relationships and synchronization primitives
that impose interdependencies on processor tasks, the streams in SCORE compute
graphs explicitly specify the precedence constraints between the compute nodes.

Techniques employed for multiprocessor scheduling include priority list sche-
duling [GDWL92] and gang scheduling [FPR96]. The priority list scheduling is
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a heuristic employed for minimum latency scheduling with constrained resources.
The technique inherently satisfies task precedence constraints while minimizing the
total computation time. The operation of the fully dynamic scheduler described
in this work is loosely based on priority list scheduling. The dynamic scheduler
uses stream token availability to prioritize compute nodes at run-time. However,
the static scheduling techniques developed in this work do not rely on priority list
scheduling because no run-time information is available to set node priorities. In
contrast, the quasi-static scheduler strives to minimize run-time overhead and to
move all possible scheduling operations off-line to be performed at application
load or install time.

On the other hand, gang scheduling techniques are useful, although apply dif-
ferently to the SCORE reconfigurable array. Multiprocessor systems have a cost
structure that is different from the one of the reconfigurable array. In multipro-
cessors, the context switch is typically an inexpensive branch instruction, while
interprocessor communication is a high latency operation. In contrast, a context
switch on a reconfigurable array involves a costly reconfiguration, while the com-
munication between device resources is inexpensive because the latency is hidden
in the pipelined interconnect. Gang scheduling for processors involves clustering
the frequently communicating tasks on the same processor. This is necessary to
take advantage of inexpensive frequent context switches between tasks that com-
municate through registers and memory, and limit expensive interprocessor trans-
actions. On the reconfigurable array, the frequently communicating compute graph
nodes are scheduled on distinct physical compute pages to enable them to compute
together for a period of time that amortizes the overhead of array reconfiguration,
while taking advantage of low latency communication between CPs and CMBs.

1.3.2 Dataflow Models

The literature offers efficient and near-optimal scheduling solutions for restricted
data-flow compute models such as synchronous data-flow (SDF) [BML96]. In SDF
the data token input and output rates of individual nodes are static. This permits a
compiler to compute specific buffer sizes and verify deadlock free operation prior
to execution. SDF scheduling leverages this knowledge of application behavior
by computing near optimal schedules statically, thereby completely avoiding any
costly run-time overhead.

Less restrictive dataflow models such as boolean controlled (BDF) and inte-
ger controlled data-flow (IDF) also define necessary conditions for graph consis-
tency and bounds on buffering requirements [Buc93, Buc94]. Since some of these
conditions can be ascertained prior to application execution, the need for dynamic
scheduling is reduced or eliminated. In contrast, SCORE dataflow graphs allow for
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dynamic data dependent token emission and consumption, making it impossible to
place a bound on the buffer sizes required for application execution correctness.
The run-time scheduler is thus required to guarantee deadlock free operation.

This work applies SDF scheduling techniques to SCORE dynamic dataflow
graphs. The primary goal is to dramatically reduce run-time overhead of the fully
dynamic scheduler to expand the applicability of SCORE to a wider range of appli-
cations. Unlike the more restrictive compute models described above, all schedu-
ling decisions cannot be precomputed in SCORE. However, this work demonstrates
that most of the scheduling work can be performed statically without sacrificing
SCORE semantics. Furthermore, these static techniques yield a superior applica-
tion performance when compared to a fully dynamic scheduling approach.

This work applies the SDF scheduling theory to a novel target device — an
on-chip network of fine-grain reconfigurable functional units. The concept of actor
rate mismatches is modified to develop a temporal partitioning strategy for efficient
time-multiplexed application execution. In general, token flow rates cannot be es-
tablished in SCORE compute graphs, and thus this work precomputes most of the
schedule based on the rates obtained from application execution profiles [HL97].
At run-time, a lightweight scheduler manages device reconfiguration and guaran-
tees execution correctness.

Buffer sizing and allocation form a large portion of this work. Maestreet
al [MKF+01] looked at scheduling of kernels with static rate dataflow in the ap-
plication critical path on a reconfigurable platform. Their work, however, did not
address allocation of variable buffer sizes. This work shows that buffer sizing is a
key technique at the scheduler’s disposal for controlling the length of application
execution epochs and amortizing the overhead of array reconfiguration.

Maestreet al dealt primarily with hardware implementations of static rate
dataflow graphs. This work includes extensions that allow SCORE scheduling to
accommodate applications with multi-rate as well as dynamic rate dataflow. This
makes SCORE well suited for applications that include operations such as com-
pression and decompression.
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Chapter 2

SCORE Scheduling

This chapter formalizes the scheduling problem and describes the analytical model
that relates application performance to reconfigurable array costs.

2.1 Fundamentals

As described in Section 1.1, the SCORE reconfigurable array consists of Compute
Pages (CPs) and Configurable Memory Blocks (CMBs), and the computation at the
Execution Model level is a graph of virtual compute pages and memory segments.
Hardware specifies the size of a compute page to fit on a CP. Two application
execution scenarios illustrate the scheduler’s role in a SCORE system:

• Small Design, Large Arrayis the simplest scenario. The entire design fits on
the array. The number of compute graph nodes is smaller than the number
of available physical CPs and CMBs. The scheduler merely maps a compute
page graph to selected physical resources once, and configures each physical
node to execute until all nodes terminate.

• Large Design, Small Arrayis a common scenario where a design requires
more resources than available. In this case the scheduler has a critical role
to time-multiplex graph nodes onto physical resources. The scheduler is
invoked periodically; it queries the array state, evaluates the computation’s
progress, and adjusts the set of resident nodes.

The scheduler is also responsible for managing application buffers and resolv-
ing an infrequently occurring condition calledbufferlock. Bufferlockmay result
when a SCORE application that assumes unbounded stream buffers is implemented
on a physical array with limited resources (see [Par95] for a formal treatment).
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Some applications may require streams to buffer a greater number of tokens
than the array stream hardware permits. The failure to provide this buffering ca-
pacity results in deadlock. The scheduler monitors the progress made by a design
and detects potential deadlock conditions. If the cause is determined to be limited
buffering capacity of a stream, the scheduler intervenes to resolve thebufferlock.
The scheduler “cuts” the offending stream, and a memory block configured as a
FIFO is inserted to provide additional buffering. Array execution then resumes.
For detailed treatment ofbufferlockresolution and relevant algorithms, the reader
is referred to [Chu00].

2.2 Hardware Implementation and Cost Model

Previously Section 1.1 highlighted the key architectural features of a SCORE re-
configurable array that help facilitate efficient paged execution of applications.
They include the following:

Streaming hardware interfaces.Streaming interfaces embedded in the array
network make on-chip communication latency insensitive. As a result, the compiler
and the scheduler are absolved from resolving the cycle-level array timing and
chip-wide timing closure to meet a specified performance target.

Distributed, independently controlled CMBs. The CMBs serve multiple
purposes. They offer high bandwidth access to on-chip memory. They store the
contents of user-specified memory blocks andstitchbuffers with intermediate com-
putation state. Additionally, the CMBs cache contexts of compute nodes.

The compute graph node context consists of a CP configuration bitstream and
the contents of CP registers and input FIFOs. The bitstream is similar to the pro-
gram code in a microprocessor system. The register and FIFO contents are akin to
stack and heap in traditional programs. To preempt the compute node execution,
the scheduler dumps the contents of its registers and FIFOs to a CMB or off-chip
memory. To resume the execution, the scheduler configures the node and restores
its context. Distributed CMBs enable multiple CPs to be configured in parallel,
because the CMBs cache the page configurations and the page states. For example,
if a reconfigurable array containsM CMBs, up toM CP could be configured at
the same time.

The streaming hardware interfaces and the distributed CMBs are the key fea-
tures of a SCORE platform that enable the architecture to scale with generations of
devices and makerun-timearray reconfiguration affordable. To specify a concrete
array implementation, a set of additional architecture parameters must be set. This
work assumes the following about the SCORE reconfigurable array.

Reconfigurable Array Controller manages CP and CMB reconfiguration.
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Reconfiguration Command Description

GETARRAYSTATUS request execution status of all CPs and CMBs
STARTPAGE enable a Compute Page (start execution)
STOPPAGE disable a Compute Page
STARTSEGMENT enable a Configurable Memory Block
STOPSEGMENT disable a Configurable Memory Block
DUMPPAGESTATE move compute page state (registers) to a CMB
DUMPPAGEFIFO move compute page FIFO contents to a CMB
LOADPAGECONFIG load compute page configuration bitstream from a CMB
LOADPAGESTATE load compute page state (registers) from a CMB
LOADPAGEFIFO load compute page FIFO contents from a CMB
GETSEGMENTPOINTERS request the contents of CMB address registers
DUMPSEGMENTFIFO move CMB FIFO contents into a CMB memory block
SETSEGMENTCONFIGPOINTERSset the contents of CMB address registers
CHANGESEGMENTMODE specify CMB mode: read, write, read-write
LOADSEGMENTFIFO load CMD FIFO contents from a CMB memory block
XFERPRIMARYTOCMB move a block of off-chip memory into a CMB
XFERCMBTOPRIMARY move CMB contents off chip
XFERCMBTOCMB move CMB contents into another CMB

Table 2.1: Array reconfiguration commands interpreted by the controller.

The scheduler running on the microprocessor sends configuration commands to the
controller (see Table 2.1). These commands include basic actions such as dump CP
state to a CMB.

This work assumes that the commands arrive one at a time to the array con-
troller. The controller immediately issues a command if there are no resource
conflicts, or stalls until the conflict is resolved. A resource conflict occurs when
two commands require the same resource to perform their actions. For example,
XFERCMBTOPRIMARY(CMB1,addr)and LOADPAGECONFIG(CMB1,CP3)
are conflicting commands, because both requireCMB1. Any two configuration
commands can run in parallel if they do not conflict. Thus, to take advantage of the
reconfiguration parallelism offered by the SCORE architecture, the scheduler must
distribute compute page contexts evenly across all available CMBs. Furthermore,
it must order the reconfiguration commands to minimize resource conflicts.

Single ported Configurable Memory Blocks.A CMB is a block of memory
and a controller that manages access to the memory through a streaming interface.
While it is feasible to make CMBs with multiple ports, this work assumes that
a CMB has a single controller that allows only one data read and one data write
port. Although CMB memory could be large enough to fit several user-specified
memory segments,stitch buffers, and page contexts at the same time, the single
controller constraint implies that only one of them can be active at a time.
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1:1 CP:CMB ratio. In this work, unless otherwise noted the number of physi-
cal Compute Pages equals to the number of Configurable Memory Blocks. Coupled
with single ported CMBs, this may inhibit efficient resource utilization in smaller
reconfigurable arrays. This is because at high virtualization, computations require
large live state storage.

Single off-chip memory port. This work utilizes a single off-chip memory
port to transfer application data and results, in addition to page contexts and con-
figurations that do not fit on chip. Because all access to primary memory must be
serialized, opportunities for parallel CP reconfiguration are severely reduced.

2.3 Scheduling Problem

This section analyzes the relationship between the total application execution time
and the underlying architecture costs. The analysis yields a model to guide tempo-
ral partitioning and resource allocation algorithms in the quasi-static scheduler im-
plementation. This section defines the resource allocation problem and discusses
the assumptions made in this work and their ramifications on the model and the
implementation.

Given the hardware cost model, the scheduler must facilitate the compute graph
execution with the goal of minimizing the makespan. With the exception of page
firing semantics, the scheduler is ignorant of the contents of compute pages, and
it “learns” the application behavior by observing its token flow traffic. To make
better scheduling decisions, the scheduler can examine graph topology, run-time
buffer fullness, dynamic data token consumption and production rates.

2.3.1 Analytical Model

This section considers a model of application performance on a system withuni-
form buffer sizes and demonstrates system inefficiencies for multi-rate applica-
tions. Then the model is extended to accommodatevariablebuffer sizes. Refer to
Table 2.2 for the parameters used in the derivations.

Uniform Buffer Model

Consider an application built to process one data token per cycle. A fully spa-
tial implementation will ideally run forK cycles, whereK is the number of input
tokens, because the compute graph size does not exceed the hardware size. As-
suming theN node compute graph is time-multiplexed on a platform with onlyP
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Parameter Description

B, Bi absolute buffer size
bi minimum intrinsic buffer size
Creconf total reconfig cost per time-slice
Carray array config ovhd per time-slice
Cswap off-chip swap ovhd per time-slice
Ccp cost of configuring a CP
f(B, L) fraction of buffers spilled
K, Ki num of tokens in a stream
Kmax max tokens in a stream (maxi(Ki))
L CMB size
M ave buffer count in a temp partition
N graph size (compute nodes)
pi rate of streami (= Ki/Kmax)
P CP count
Q buffer scaling factor
R num of reconfigs per execution
S num of temporal partitions
s(P, Y ) config sequentialization param
Tideal ideal app run time (no overhead)
Trun total application run time
ts(j) the set of streams in time-slicej
V ratiopi/bi for streami
Wio off-chip bandwidth
Y CMB count

Table 2.2: A summary of parameters used in the analytical model.

compute pages (CPs), the implementation will ideally run forTideal cycles:

Tideal = KS (2.1)

whereS ≥
⌈

N
P

⌉
is the number of temporal partitions.

With the reconfiguration overhead incurred each time-slice, Equation 2.1 be-
comesTrun = KS + RCreconf , whereR is the total number of array reconfigura-
tions during application execution, andCreconf is the cost of each reconfiguration.
Tideal, defined solely by the application and the array size, is the lower-bound on
the execution time and cannot be affected by any architecture parameters. To min-
imizeTrun, we must address the overhead.

We begin by understandingR, the number of array reconfigurations. Assuming
all buffers are of sizeB and are filled at a constant rate of one token per cycle, then
R = K

B S. That is, buffers fill up everyB cycles, and the system completes only one
(K/B)’th of the computation in each iteration throughS subgraphs. Substituting
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Figure 2.1: Application Execution Timeline.

the expression forR, we obtain:

Trun = KS +
K

B
SCreconf (2.2)

If Equation 2.2 completely described the relationship between application per-
formance and the hardware costs, simply using large buffers,B, would minimize
the execution time. However, the effects onCreconf of finite on-chip memory and
limited off-chip IO bandwidth still need to be considered. Array reconfiguration
overhead,Creconf , consists of swapping the application state on/off chip and array
reconfiguration (Figure 2.1).

Creconf = Cswap + Carray (2.3)

Off-chip Transfer Overhead Cswap is the cycle cost of spilling and restoring
computation state to and from off-chip memory. Assume every temporal graph
partition containsM buffers of sizeB. If the scheduler spills all buffers off chip
and loads a new set, the memory transfers consumeCswap = 2MB

Wio
cycles with the

off-chip bandwidthWio.
Fortunately, not all buffers are spilled. Some reside permanently in the on-chip

memories (CMBs), while others are periodically swapped on and off chip. LetL be
the CMB size andf(B,L) be a fraction of buffers spilled due to the limited on-chip
memory capacity, then the off-chip transfer overheadCswap = 2MB

Wio
× f(B,L).

The functionf(B,L) is highly implementation specific. For example, with a
single-port, a CMB contains at mostS buffers, one from each temporal partition.
The “longest time before reuse” buffer replacement policy is optimal for our cycli-
cal buffer access pattern. Assuming the “longest time before reuse”f(B,L) =
1−bL/Bc /S. This formulation confirms the intuition that fewer buffers are spilled
when CMB sizeL increases or buffer sizeB decreases.

Array Reconfiguration Overhead The second component of Equation 2.3
is the overhead of physical compute page reconfiguration. The CMB controllers
also require reconfiguration, which includes saving/restoring current address and
bounds registers. The cost of configuring a CMB controller is typically negligible
in comparison to the CP context switch and will be ignored here for simplicity.
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AssumingP compute pages are configured sequentially, the cost isPCcp, where
Ccp is the CP context switch time.Ccp includes dumping CP state, loading a new
configuration bitstream, and loading the state of another compute node.

Depending on an architecture and memory allocation, some resources can be
configured in parallel. Define a parameter1 ≤ s(P, Y ) ≤ P to represent the sched-
uler’s ability to exploit reconfiguration parallelism in an architecture. If all pages
are configured in parallel, thens(P, Y ) = 1; if all are configured in sequence, then
s(P, Y ) = P . The cost of reconfiguration becomesCarray = s(P, Y )× Ccp.

In this system, distributed on-chip CMBs enable parallel reconfiguration. IfY
CMBs hold page state, up toY CPs can be configured in parallel, reducing the
cost:

Carray = s(P, Y )× Ccp =
⌈

P

Y

⌉
Ccp (2.4)

Equation 2.4 shows that the entire array can be reconfigured in a single CP con-
figuration time,Ccp, if Y ≥ P . This assumes: (1) CP configurations are evenly
distributed amongY CMBs; (2) CP state remains on chip; if CP state is spilled, it
is brought on chip at an additional cost.

Complete ModelBy substituting overhead terms into Equation 2.2, we arrive
at the desired model:

Trun = KS +
KS

B
[Cswap + Carray] (2.5)

= KS +
KS

B

[
2MB

Wio
f(B,L) + s(P, Y )Ccp

]
Variable Buffer Model

Many applications include multi-rate components with differing input and out-
put stream rates,e.g. up/down-sampling; and many applications also include dy-
namic rate components with varying relative rates,e.g. compressors, decompres-
sors. With uniform buffer sizes,B, as previously assumed, multi-rate and dynamic
rate applications are guaranteed to utilize resources inefficiently. The assumption
thatK tokens flow through each stream is not true for multi-rate applications. If
Ki is the average number of tokens flowing through streami, define stream rate
pi = Ki/Kmax, whereKmax = maxj(Kj). Note that dynamic rates are modeled
as average, static rates, across a range of input datasets. Incorporating multi-rate
streams into the model of an ideal execution time, we obtain:

Tideal = Kmax

∑
1≤j≤S

max
i∈ts(j)

(pi) (2.6)
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wherets(j) is a set of nodes in time-slicej. Since0 ≤ pi ≤ 1, the ideal time-
multiplexed execution time of a multi-rate application can be lower than that of a
single rate application (KS) if high rate and low rate pages are not scheduled to-
gether in the same time-slice. The length of a time-slice depends on its own highest
rate buffer. Notice that Equation 2.6 is the multi-rate analogue of Equation 2.1. Re-
call that Equation 2.1 is the ideal execution time of a time-multiplexed computation
graph with uniform flow rates. If all stream ratespi = 1, Equation 2.6 reduces to
Equation 2.1.

Extending the model for uniform buffer sizes in Equation 2.2 to accommodate
multi-rate applications, we obtain:

Trun = Kmax

∑
1≤j≤S

max
i∈ts(j)

(pi) +
(

Kmax

B

)
SCreconf (2.7)

The buffer with the highest data rate (Kmax tokens) sets the lower bound on the
number of times the array is reconfigured. The maximum rate buffer stalls appli-
cation execution early, even if other buffers still have available space to continue
token processing. This memory underutilization can be avoided by settingrelative
buffer sizesBi to be inversely proportional to the rate of their streams:

∀i6=j

(
pi

Bi
=

pj

Bj

)
(2.8)

This approach, where no single buffer limits application performance, is similar to
traditional SDF scheduling [BML96] that allocates token storage proportional to
the firing rates of the SDF actors in the minimum balanced schedule.

Although Equation 2.8 constrains the relative buffer sizes, the complete model
requires the absolute buffer sizes. If Equation 2.8 holds for all buffers, letbi be
the intrinsic buffer size, such thatBi = Qbi and∀ibi ≥ 1. While the values
of bi are essentially determined by the application, the scheduler can varyQ, the
buffer scaling factor, to obtain absolute buffer sizesBi that minimize application
execution time.

To obtain a model that relates execution time with buffer sizes, replaceB with
Bi in Equation 2.7, substituteQbi for Bi, and thenV for the ratiopi/bi which is
constant for all buffers (Equation 2.8).

Trun = Kmax

∑
1≤j≤S

[
max

i∈ts(j)
(pi) +

V

Q
Creconf (j)

]
(2.9)

Substituting the actual expression for theCreconf (j) will yield the final model,
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whereB is the average buffer size in a CMB.

Trun = Kmax

∑
1≤j≤S

 max
i∈ts(j)

(pi) +
V

Q

 ∑
i∈ts(j)

[
2Qbi

Wio
f(B,L)

]
+ s(P, Y )Ccp


(2.10)

Here,f(B,L) represents a fraction of buffers that on average must be spilled to
the off-chip memory in a given time-slice.

Model Review The model confirms our intuition about the relationship be-
tween the application execution time and buffer allocation parameters. The first
term, Tideal from Equation 2.6, is the lower bound on the application execution
time, dependent only on the input size, node rates (pi), and the array size (S ≥⌈

N
P

⌉
). The factorVQ in the overhead term shows that the array is reconfigured less

as buffer sizes grow withQ.
The two types of overhead contribute to the total execution time: off-chip mem-

ory transfers and array configuration. Off-chip memory transfers increase withQ,
while the array configuration overhead decreases withQ. More accurately, the
configuration overhead is amortized withQ, which makes time-slices longer.

Consider two outlying scenarios. If off-chip bandwidthWio is high, and recon-
figuration overhead dominates, the expression reduces to:

Trun = Tideal +
SV

Q
s(P, Y )× Ccp (2.11)

which shows that a largeQ amortizes reconfiguration overhead and minimizes
execution time (Figure 2.2a).

In the opposite case where the off-chip bandwidth is low and memory transfers
dominate, the expression reduces to:

Trun = Tideal + Kmax ×
∑

1≤j≤S

∑
i∈ts(j)

2V bi

Wio
f(B,L) (2.12)

suggesting a smallQ that eliminates memory traffic and reduces the application
execution time (Figure 2.2b). This is because a smallQ allows all buffers to fit on
chip, reducing average buffer sizeB.

2.3.2 Problem Definition

The SCORE scheduling problem that includes the temporal graph partitioning and
the physical resource allocation can be posed as follows:
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(a) Array overhead dominates:Qopt is high. (b) Memory transfers dominate:Qopt is low.

Makespan breakdown into off-chip memory transfer overhead (∝ 1/Wio), array management over-

head, and ideal execution time.Qopt is the buffer scaling factor that yields the minimum makespan.

Figure 2.2: Model predicted makespan breakdown.

GIVEN:
• A directed graphG = (V,E)
• A node setV = C ∪M consists of distinct sets of compute nodesC and

memory nodesM .
• Each edgei ∈ E is annotated with a flow ratepi.

• Architecture parameters that include CP countNcp, CMB countNcmb, CMB
sizeL, off-chip bandwidthWio, and configuration costCcp

Dynamic rate SCORE graphs make it impossible to statically determine graph flow
rates,pi’s. The model and scheduler implementation rely onaverage ratesobtained
by profiling an application with a range of input data-sets.

COMPUTE:
with the goal to minimizeTrun (Equation 2.10)
1. Nonoverlapping partitionP = (P1, P2, ..., PS) of the node setV , that meets

resource constraints:
∀j∈[1,S] |Pj ∩ C| ≤ Ncp (2.13)

∀j∈[1,S] |Pj ∩M |+ |Tj | ≤ Ncmb (2.14)

whereTj is the set of edges entering or leavingPj :

Tj = {(n, m) ∈ E | ∀i6=j(n ∈ Pi ∧m 6∈ Pj) ∨ (n 6∈ Pi ∧m ∈ Pj)}

The setTj contains thestitch buffers that are inserted between temporal parti-
tions to buffer intermediate computation state and consume CMBs.
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2. Stitch buffer sizes, consisting of theintrinsic buffer sizesbi ≥ 1 and the scaling
factorQ ≥ 1, such that ∧

i,j∈E
i6=j

(
pi

bi
=

pj

bj

)
(2.15)

andQbi ≤ L, whereL is the CMB size.
3. AssignmentRp[] of compute pages to CPs:

∀n∈CRp[n] ∈ [1, Ncp] (2.16)

such that no two compute pages in a partition occupy the same resource:

∀j∈[1,S]∀n,m∈Pj

n6=m

Rp[n] 6= Rp[m] (2.17)

The entities assigned to a CMB include user memory segments (setM ), inter-
partition stitch buffers (setT = ∪jTj), and compute page state buffers (one
for each page inC). Let B = M ∪ T ∪ C. Compute the assignmentRm[] of
members ofB to CMBs:

∀i∈BRm[i] ∈ [1, Ncmb]× (Astart..Aend)i (2.18)

where the buffer size is

Ai
end −Ai

start =


Bi if i ∈M
Qbi if i ∈ T
ksize if i ∈ C

(2.19)

and such that no two memory segments in a partition occupy the same resource:

∀j∈[1,S]∀n,m∈Pj

n6=m

Rm[n] 6= Rm[m] (2.20)

Each mappingRm[n] = kn × (Astart..Aend)n contains the CMB identifierkn

and the address range(Astart..Aend)n occupied by the buffern. No two seg-
ments in a partition can share a single-ported CMB:

∀j∈[1,S]∀ n,m∈Pj

n,m∈M∪T
n6=m

Rm[n].k 6= Rm[m].k (2.21)

In the problem statement, we have made several assumptions, that can be re-
laxed at the expense of added complexity to the allocation algorithms.
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• Buffers do not share space dynamically. Conceivably, since a running appli-
cation depletes source buffers and fills sink buffers with data, a source buffer
and a sink buffer could share physical space. However, since the locally dy-
namic rates can differ from the measured, long term averages, one cannot
exploit this kind of buffer sharing without considerable additional memory
management complexity.

• Buffer space is allocated based on the computed buffer size when the buffer
is full. The system cannot allocate the same address space for two buffers
from different temporal partitions, unless the contents are spilled between
time-slices. For example, a buffer depleted in time-slice 1 and filled in time-
slice 4 cannot share the same space with a buffer filled in 2 and depleted in
3, because the degree to which a buffer is depleted may vary depending on
an input data-set.

• Buffer spills areatomic. The entire buffer content is forced off-chip to free
space for another buffer, even if only a fraction of that space is required.

The analytical model and the problem statement presented in this section serve
as the guideline for algorithm development for the quasi-static scheduler system.
The following chapters elaborate on the implementation details to demonstrate the
system’s ability to adapt to variations in reconfigurable array parameters. These
variations encompass changes in the underlying hardware costs and available re-
sources.
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Chapter 3

Quasi-Static Scheduling

This chapter answers the question, “How does one choose the system implementa-
tion that both yields high quality schedules and incurs low, manageable overhead?”
It describes the space of scheduler implementations and evaluates several points in
that space.

3.1 Space of Scheduling Solutions

The problem of low run-time overhead scheduling of data-flow graphs has been
solved for some restricted data-flow models that include synchronous data-flow
(SDF) [BML96]. Under SDF, for example, the data token input and output rates of
individual nodes are static. SDF scheduling leverages this knowledge of applica-
tion behavior by computing near optimal schedules off-line, completely avoiding
run-time overhead. A static schedule is simply a sequence of actor firings.

More expressive models such as boolean (BDF) and integer data-flow (IDF)
also offer opportunities for mostly static scheduling [Buc93, Buc94]. In addition
to static rate actors of SDF, these models offer explicit control actors such as multi-
plexors and switches. For non-terminating, deadlock-free execution with bounded
buffer memory, token flow rates must meet certain consistency conditions. These
conditions often depend on the actual boolean or integer values emitted by ac-
tors at run-time. Static analysis and knowledge of actor semantics may permit a
compiler to ascertain off-line whether a graph meets these conditions. A strongly
consistent graph, that meets all consistency conditions with any input data set, can
benefit from low overhead, purely static scheduling. However, a weakly consistent
graph, that meets consistency condition only with some input data, requires greater
scheduler involvement at run-time. In such a case, aquasi-staticschedule can be
generated to reduce run-time decision making to a minimum. Aquasi-staticsched-
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ule describes execution of a boolean or an integer data-flow graph and consists of a
sequence of actor firings. Some firings are predicated on the token values emitted
by actors during graph execution.

Heterochronous data-flow (HDF) is another compute model that is related to
SCORE and can benefit from static scheduling [GLL99]. Both SCORE and HDF
graph nodes contain a finite-state machines that control computation data-paths,
which are effectively SDF components. Unlike SCORE, to permit static analysis,
HDF restricts state transitions to only occur between schedule iterations. Thus
for each combination of actor states, HDF graph behaves as a SDF graph with a
unique type signature of token flow rates that can be used for static analysis. The
questions of deadlock and buffer bounds are decidable off-line. However, static
scheduling is not always practical since the number of states in the compute graph
is exponential in the number of actors. In such a case, some scheduling decisions
may be postponed until run time.

In the restricted compute models discussed above, a scheduler takes advan-
tage of known graph node behavior to reduce run-time overhead. In SDF, actor
firing rates are static. In BDF and IDF, the static rate components are handled as
SDF graphs, while the known semantics of control actors combined with observ-
able run-time values provide an opportunity for static analysis and generation of a
quasi-static schedule. An HDF graph is simply a set of SDF graphs, and each syn-
chronous graph can be verified to be consistent. Restrictions in these models allow
for low overhead scheduling, and in some cases provable deadlock free execution
with bounded buffers.

In contrast, SCORE compute graphs offer greater expressibility to a program-
mer, but no information about compute node semantics to a scheduler. Given the
intended hardware target, run-time observability of the data emitted by graph nodes
is very limited. A scheduler can make noa priori assumptions about application
behavior, but must observe computation progress to make scheduling decisions.
A dynamic scheduler seems to be a natural fit for SCORE graphs because it can
handle dynamic data-driven application behavior. However, it comes at the cost of
high run-time overhead.

Notice that both extremes of fully dynamic and fully static scheduling perform
the same basic set of operations as do all implementations in between. All sched-
ulers compute node firing sequence and timing, and allocate physical resources
to nodes and communication links. What separates these approaches is the time
when scheduling decisions are made. We must recognize these extremes and the
space between them to understand the opportunities that exist for low overhead,
high quality scheduling for SCORE.

In [Lee91], Lee forms a taxonomy of scheduling solutions and explores the
space between fully static and fully dynamic approaches. The author attempts to
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Figure 3.1: Space of scheduling solutions, which includes (1) FPGA CAD, (2)
a fully static (e.g. SDF), and (6) a fully dynamic scheduler (e.g. Section 3.3).
Quasi-Static scheduler (3) is discussed in Section 3.4.

find a compromise between a low overhead static and a high overhead dynamic
scheduling for applications with data-dependent data-flow. Lee demonstrates ef-
ficient hybrid scheduling techniques that employ dynamic scheduling only when
absolutely required. For data-flow models such as BDF and IDF, although it is
impossible to deterministically optimize the statically computed schedules, good
compile-time decisions frequently remove the need for dynamic scheduling or load
balancing [HL97, Ha92, HL91].

A goal of this work is to expand on the taxonomy in [Lee91] by identifying its
analogue for SCORE. To run an application on a reconfigurable array, the sched-
uler must perform five specific inter-dependent steps shown on Figure 3.1. One
way to represent a spectrum of SCORE run-time resource management solutions
is as a one-dimensional space of arranged scheduling steps. Each point represents
a scheduling solution and cuts the space into two parts: steps performed dynami-
cally and steps performed statically. For example, in Figure 3.1 point3 represents
a scheduling solution where steps to the left (TimingandTimeslice Sizing) are per-
formed dynamically,i.e. at run-time. Steps to the right (Place/Route, Resource
Alloc, andSequence/Temp Partition) are performed statically,i.e. at application
load/install time.

Figure 3.1 shows six possible scheduler implementations that differ in run-
time complexity and overhead as well as scheduling optimality. The boundaries
between these steps are not rigid due to close interdependence between operations.
Nevertheless, consider this diagram to represent feasible implementations of run-
time resource management solutions for SCORE.

Let us look at each scheduling step in detail.
• Sequence/Temporal Partitioningpartitions the graph into a sequence of prece-

dence constrained, schedulable sub-graphs. A schedulable subgraph is one
that “fits” on the array. This means that each virtual page requires a physi-
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cal CP, each user memory segment requires a CMB, and each stream crossing
a temporal partition boundary must be buffered by a CMB. While comput-
ing the sequence is generally a straight-forward process constrained only by
graph topology, temporal partitioning with optimization(s) is an NP-hard prob-
lem. Optimizations include minimizing buffering requirements, maximizing
hardware utilization, minimizing cuts in graph cycles to prevent thrashing, and
maximizing temporal locality of intermediate data.
• Resource Allocationmaps the schedulable subgraphs down to physical resources

in an “ideal array” without routing constraints. Virtual pages are assigned to
physical CPs; virtual memory segments are assigned to CMBs, and memory is
allocated in the assigned CMBs. This step primarily attempts to maximize on-
chip CMB memory utilization in an effort to reduce transactions with slower
primary memory.

• Placement/Routingmaps the nodes of the “ideal array” onto the same size real
array with a network that constrains routing. This step may fail if the sched-
uler made wrong assumptions about the array’s routing structure or its physical
layout in two previous steps. Should routing or placement fail, the scheduler
must return toTemporal Partitioningand repeat the first two steps with tighter
constraints.
• Timeslice Sizingcomputes a time interval for each schedulable subgraph to

be resident on the array. This step closely depends onTemporal Partitioning,
allocated buffer sizes, and I/O token rates intrinsic to individual nodes.

• Timing is responsible for cycle-by-cycle operation of the array hardware. Soft-
ware tools such as those in FPGA CAD flows (point1) compute conservative
timing statically for FSMs, data-paths, and communication components in a
design. However, the SCORE scheduler relies on the array hardware to sup-
port dynamic timing using network interfaces with flow control and the ability
to stall compute pages (CPs) and configurable memory blocks (CMBs).
Flexible timing enhances the model’s robustness to target device changes, en-
abling a scheduler to manage resources on an array of any size and/or family.
This is true as long as common reconfiguration commands are supported and
data integrity is guaranteed by the communication protocol. Contrast this with
existing FPGA CAD tools that severely limit design scalability and compati-
bility among target devices.
Independent of implementation details, every SCORE run-time scheduler is re-

sponsible for each of the steps above. Figure 3.1 marks1 through6 as clear places
where cuts, that divide the space into dynamic and static sub-spaces, can turn into
implementations. Some steps, such asTiming may be implemented efficiently in
array hardware, thus obviating direct involvement of the run-time software sched-
uler. Although the proper balance of efficiency, functionality and flexibility is dif-
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ficult if not impossible to attain, below we summarize the key issues driving the
selection of a specific solution based on the underlying implementation require-
ments.

• Run-Time overhead is the most obvious. Although the scheduler at1 in-
curs no run-time overhead, the overhead gradually increases as the scheduler
implementation performs more steps at run-time. Two factors determine the
run-time overhead: the scheduling algorithm complexity and the frequency
at which the run-time system checks the application status.

Scheduling algorithm complexity is another factor that determines the over-
head. A simple scheduling algorithm yields a low overhead implementation,
but sacrifices the application performance even in theideal case, where no
overheads exist.

The frequency at which the run-time system checks the application status
determines how stale the information on which the scheduler bases its de-
cisions. In theory, to attain the highest scheduling quality, the system must
be aware of the exact application status at every clock cycle of its execu-
tion. Cycle accurate information such as stream buffer fullness and the nodes
starving due to insufficient input tokens would result in a good schedule, at
the cost of very high run-time overhead.

• Scheduling quality is highly dependent on the scheduler’s knowledge of
application behavior, predicted and observed. For schedulers performing the
majority of steps statically, accurate prediction of application behavior is
critical for schedule quality. For example, in SDF, close-to-optimal sched-
ules can be constructed statically. As a scheduler moves from2 toward6
and performs more steps at run-time, application behavior can be predicted
and monitored. For every scheduler from2 to 6, bothaccuracyof predicted
andcurrencyof observed information determine scheduling quality. There is
a trade-off between the age of an observation and the overhead of collecting
it. Presumably, if array state is monitored continuously, a dynamic scheduler
would be a superior if costly solution.

• Advanced SCORE features.SCORE permits instantiation of graph nodes
and creation of subgraphs at run-time, allowing a computation to be com-
posed dynamically, and share the reconfigurable array with other applica-
tions. These features requireResource AllocationandTemporal Partitioning
to map virtual to physical resources at run-time. Although this seems to im-
ply that a fully dynamic scheduler is necessary, a static scheduler may be
more efficient if the changes to graph topology are infrequent. The static
scheduler simply has to recompute the schedule to reflect the changes.
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Figure 3.2: Application Execution Timeline.

Although every scheduling solution in the implementation space discussed
above can implement the complete SCORE semantics, only a subset performs
efficiently. Independent of the actual implementation, a great variety of control-
dominated computations can be expressed without restrictions (e.g. compression,
sorting, selection). This allows efficient exploitation of the powerful semantics of
SCORE in a low overhead scheduling implementation.

3.2 Scheduling Overhead and Timeslice Size

Consider the impact of the scheduling overhead on the application performance.
How critical is the run-time overhead as a factor guiding the selection of the sched-
uler implementation? The application execution timeline (Figure 3.2) shows that
scheduling and reconfiguration overheads form the lower bound on the time-slice
size in the system developed in this work. Time-slice size determines the ability of
a run-time scheduler to react to changes in application behavior. That includes the
decision to remove compute pages that cannot proceed with execution (e.g.out of
input tokens) and to bring in the new ones that can run.

Although this work evaluates a time-slice based execution model, the sche-
duling overheads affects event-based models similarly. Consider a system where
a page or a group of pages signals to the scheduler when they cannot make fur-
ther progress. The scheduler must remove the stalled nodes, compute a new set
of nodes to map to resources that became available, and reconfigure a part of the
array. Large overhead restricts the response time of the scheduler, and thus limits
applicability of SCORE to some applications. Consider several scenarios, where
high overhead leads to a very inefficient system:

• The performance of applications with short total execution time is dominated
by the run-time overhead of scheduling for the first time-slice.

• When the number of pages in a closed feedback loop is larger than the num-
ber of physical pages, the amount of useful computation per time-slice will
be limited by the number of tokens in the feedback loop. If this number of
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tokens is small compared to the reconfiguration and scheduling time, then re-
configuration and scheduling overhead will dominate the useful computing
time. This is a phenomenon similar to virtual memory thrashing that occurs
when the working set does not fit into available physical memory.

Clearly, to broaden applicability of SCORE, scheduling must incur low over-
head, while providing acceptable results. The following two sections examine sev-
eral points in the space of scheduler implementations to evaluate their performance
and the overhead.

3.3 Fully Dynamic Scheduler

Because few restrictions exist on token flow behavior in SCORE compute graph
nodes, a fully dynamic run-time scheduler, point6 on Figure 3.1, was a natural
first choice for the the system implementation. The scheduler is designed to han-
dle large data-dependent variations in page token consumption and emission rates,
and therefore it makes decisions driven largely by token availability at page in-
puts. A dynamic scheduler continuously monitors active computation progress on
the array and adapts the schedule to match the observed application data-flow pat-
terns. The resulting schedule quality depends heavily on the temporalgranularity
of monitoring and scheduling decisions. For instance, fine-grained, cycle-by-cycle
scheduling may result in near-optimal schedules but incurs prohibitively expensive
run-time overhead.

3.3.1 Functionality

The dynamic scheduler implementation was primarily an effort by Michael Chu.
For a complete description and analysis, see [Chu00]. This section discusses the
dynamic scheduler operation as it is used as a point of reference for the Quasi-Static
scheduler developed in this work.

The dynamic scheduler uses a version ofpriority-list scheduling. Instead of
evaluating all graph nodes as candidates using a priority function, only the nodes
whose predecessors have been or are scheduled and thus satisfy the precedence
constraints are considered. These candidate nodes form a “frontier” that moves
downstream across a compute graph. The priority of a candidate is directly pro-
portional to the availability of input tokens and output space. Alternatively, the
algorithm can be thought of as a greedy, breadth-first packing of nodes onto the
array.

Figure 3.3 demonstrates the relationship between dynamic scheduler modules.
The scheduler is invoked in each time-slice to perform the following sequence of
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Runtime Scheduler

QueryArrayState

Schedule

DeadlockDetect

Resource Allocation

Reconfigure

Figure 3.3: Fully Dynamic Scheduler: module flow in the critical loop.

operations. Each timeslice length is fixed to 250,000 cycles. On the application ex-
ecution timeline (Figure 3.2) these operations are collectively marked as “Compute
Schedule”:

• Query Array Stateobtains execution statistics from the array hardware, up-
dates corresponding scheduler data structures. It also identifies pages to be
removed, including pages that terminated or exhibited low firing activity.

• Deadlock Detectverifies that a resident computation is making progress.
Failure to detect reasonable progress on the array forces the scheduler to in-
voke deadlock detection and resolution algorithms. Bufferlocks are resolved
as described in Section 2.1, and deadlocked processes are killed.

• Scheduleidentifies the array resources that became available after the sched-
uler removed low activity and terminated nodes. This module then attempts
to pack the array with the nodes from the “frontier” priority list, which are
expected to make progress if scheduled. The scheduler inserts specialstitch
segments to buffer the contents of streams crossing temporal partitions. This
module outputs a page subgraph that is guaranteed to fit on the array, which
will be scheduled in the subsequent time-slice.

• Resource Allocationassigns the subgraph nodes to physical compute pages
(CPs) and memory blocks (CMBs).

• Reconfigureissues a sequence of commands to the array controller to load
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Figure 3.4: Wavelet Encoder (30 pages) performance summary for the Fully Dy-
namic Scheduler.

the subset of nodes selected by the previous modules and to resume execu-
tion.

3.3.2 Analysis of Performance

Figure 3.4(a) shows total execution time for one SCORE application, a wavelet-
based image encoder that requires 30 physical pages for a fully spatial implemen-
tation. The vertical axis shows the total execution time to encode a 512× 512
bitmap. The horizontal axis shows the array size in compute page and configurable
memory block pairs. Performance was measured on a cycle-level array simula-
tor. The two curves shown on the diagram represent the execution times — one
on a simulated realistic system and the other on a simulated idealized system. The
idealized system does not injure the run-time computational overhead of the sched-
uler. Both curves exhibit expected performance scaling behavior. In general, more
hardware results in an equal or lower execution time. However, this trend is not
strictly monotonic in the hardware size due to anomalous effects in the dynamic
scheduler.

The scheduler implementation was heavily optimized. In attempt to reduce
run-time overhead while maintaining schedule quality, all non-essential compo-
nents were eliminated, and remaining code was redesigned to improve memory
allocation and layout of data-structures. As shown on Figure 3.4(b), the average
run-time scheduling overhead ranges from 50 to 150 thousand cycles per time-
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slice. Compare that to a small overhead of less than 10 thousand cycles for array
reconfiguration. This high scheduling overhead translates into 35% of the total ap-
plication execution time. Similar high run-time overhead is observed with other
applications. Refer to Appendix B.1 for complete results.

Having no basis for comparison, little can be concluded even in an idealized
system about the scheduling quality. Clearly a more complex algorithm than the
one implemented would be required to further improve application performance.
With a high run-time overhead, an attempt to improve the run-time scheduler qual-
ity may further constrain the set of practical applications for SCORE.

The dynamic scheduler may provide acceptable results for applications with
unlimited total execution time or a very large number of execution cycles on the
order of 100,000s. However, as discussed in the previous section, high schedu-
ling overhead may make a SCORE implementation inefficient. Since the micro-
architectural design exhibits array reconfiguration time on the order of only 10,000
cycles or less, dynamic scheduling becomes the primary bottleneck preventing ef-
ficient execution of a range of applications.

3.4 Quasi-Static Scheduler

A viable and efficient alternative to the Fully Dynamic scheduler, point6, is the
quasi-static scheduler that corresponds to point3 on Figure 3.1. The quasi-static
scheduler computes graph temporal partitioning, execution sequence, and resource
assignment off-line. Timeslice sizing is the only operation performed at run time.
The quasi-static approach adapts to the slowly varying application run-time char-
acteristics, because it recomputes a high quality, static schedule very infrequently
to reflect only substantial changes in the compute graph topology or page firing
rates.

3.4.1 Basic Implementation Principles

Static Scheduling of Dynamic Dataflow Graphs

A Fully Dynamic Scheduler makes its decisions based on the graph topology and
the run-time token availability of individual compute pages. In contrast, the quasi-
static scheduler uses the graph topology and predicted page token emission and
consumption rates. Although in SCORE the token rates are dynamic and data-
dependent in general, many practical applications such as image codecs share
the following common characteristic. While their instantaneous, short-term token
emission and consumption rates are dynamic and rapidly varying, their long-term
behavior is on average static and bounded.
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Consider, for example, a Huffman encoder in the JPEG encoder application.
In theory, the output data rate cannot be bounded. In practice, measurements per-
formed in this work show that the token emission rate has tight lower and upper
bounds over a large range of images.

A scheduling system that uses the average, long-term token production and
consumption rates for its decisions, can operate effectively and correctly as long
as it can handle the rare cases when the token production rates greatly exceed the
expected average. The rates used in the quasi-static scheduler are the averages
obtained by profiling the previous executions of an application. Additional infor-
mation can also be obtained from profiling, including the standard deviation on rate
distribution for each individual operator.

Relationship to SDF scheduling

The quasi-static scheduler expands on existing work to map synchronous data-
flow (SDF) programs to uni- and multi-processors [BML96]. An SDF program
is a data-flow graph whose computational nodes (actors) communicate viaarcs
using the same streaming discipline as SCORE. This work adapts SDF analysis
and algorithms for SCORE by equating a page to an actor.

SDF is well established in the literature and has been successfully used to map
signal processing algorithms to a variety of processor platforms. However, SCORE
scheduling for a hybrid reconfigurable architecture differs in two key ways from
scheduling SDF on microprocessors.

First, SDF actors are restricted to having static input/output rates. An example
of SDF is an adder repeatedly consumes two inputs and produces one output. In
contrast, SCORE pages may have dynamic input/output rates. An example of a dy-
namic page is a Huffman encoder. Dynamic rates make it impossible to determine
a static bound on the run-time requirements for buffer memory. In the absence of
such a bound, the SCORE scheduler computes a quasi-static schedule fromaver-
age input/output rates and makes an allowance at run-time for expanding stream
buffers and modifying the schedule.

Second, the SCORE reconfigurable architecture has different execution costs
than a microprocessor running SDF and hence requires different approaches for
optimizing the schedule. An SDF program for a uni-/multi-processor target is typi-
cally scheduled at compile time as a collection of threads, one per microprocessor.
Each thread repeatedly evaluates a subset of actors.

In processor systems, the cost of inter-processor communication is higher than
memory access, consuming 10s to 100s of cycles. Therefore, an SDF schedule
optimizes for minimum local buffer sizes by evaluating each actor a minimum
number of times in turn. The cost of switching to evaluate a different actor is low,
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potentially as inexpensive as incrementing the program counter or taking a branch,
typically several clock cycles. Because frequent actor switching is acceptable, SDF
techniques tend to clustercommunicating actors in the same processor, running
them time-multiplexed with memory-buffered communication.

On reconfigurable hardware, however, switching to evaluate a different page
is expensive, requiring saving and restoring a page context, typically hundreds to
thousands of clock cycles. Consequently, a SCORE schedule prefers to reuse a
page for many consecutive cycles to amortize the cost of reconfiguration. On the
other hand, the reconfigurable hardware makes inter-page communication prim-
itives cheap, ideally offering single-cycle pipelined send/receive. Consequently,
SCORE takes advantage of spatial concurrency enabled by a network of compute
pages (CPs) and schedulescommunicating actors on separate CPsto reduce the
number of context switches.

Minimization of context switches has also been addressed in SDF scheduling
with a technique known as optimal vectorization. Vectorization can help gen-
erate minimum activation schedules for scalable synchronous dataflow (SSDF)
graphs [RPZM93]. In each activation, a scalable SDF graph can consume and
produce any integer multiple of the actual rates defined by its actors. An activation
is a series of operations to begin executing a (sub)graph; in a multi-threaded im-
plementation, an activation is a context switch. The integer multiple of the rates is
known as the blocking factor. Optimal vectorization is a transformation on a SSDF
subgraph that increases by a blocking factor the number of tokens consumed and
produced per (sub)graph activation. This transformation attempts to minimize the
number of block activations while meeting hardware resource constraints. Notice
that vectorization increases stream buffering requirements to improve application
performance.

Scheduling of SCORE compute graphs is related to scheduling of scalable
synchronous dataflow (SSDF) graphs [RPZM93]. The scheduler executes each
SCORE subgraph for a period of time that amortizes the high overhead of context
switches. Execution length depends directly on the amount of on-chip memory
available to buffer intermediate results. The buffer scaling factorQ, defined in
Section 2.3.1, determines the amount of available space for intermediate compu-
tation state. This scaling factor is analogous to a blocking factor in SSDF, which
must be carefully selected to minimize activations (context switches) and meet
hardware imposed constraints. Section 5.2.1 discusses an algorithm to select the
optimal buffer scaling factorQ.

35



Execution Correctness

The quasi-static scheduler producessingle-appearanceschedules based on appli-
cation compute graph topology and token emission and consumption rates of com-
pute pages. Each compute graph node appears in the schedule exactly once, and
therefore the quasi-static scheduler provides the same computational semantics as
the dynamic scheduler.

In general, time-multiplexed execution using physically bounded buffers must
produce exactly the samefunctionalresult as would a fully spatial implementation
with unbounded buffers. To see why this is true, note the following:
• The behavior of a SCORE graph is completely deterministic and independent

of operator timing. This is a consequence of the execution semantics that an
operator can fire only when input data tokens are available. Hence, pages can
be scheduled in any order without changing the semantics of the graph.
• A schedule that includes every virtual page gives every page an opportunity to

fire on each schedule iteration.
• The quasi-static scheduler iterates through its schedule until all pages have

completed. Hence, regardless of the order in the schedule, every page has an
opportunity to consume all of its inputs and produce all of its results.
• As long as the array is not deadlocked, the virtual graph makes computational

progress on every schedule iteration.
• Should bufferlock occur, the scheduler expands the full buffers to provide the

illusion of unbounded buffers up to the available memory in the system.
Therefore, any graph executing without a deadlock on unbounded hardware, does
not deadlock when time-multiplexed onto limited physical resources by the quasi-
static scheduler. The quasi-static schedule produces the same functional results as
the unbounded case. Note that a deadlock occurs only if the application’s total
buffering requirements exceed the physical system memory; however, this is no
different from an application running out of memory in a conventional processor
system.

3.4.2 Hardware Support

Timeslice Sizingstep separates a fully static scheduler from the quasi-static sched-
uler, points2 and3 in Figure 3.1.Timeslice Sizingdetermines the length of time
each scheduled subgraph resides on the array. While the fully static scheduler spec-
ifies a priori precise periods of time to schedule each subgraph, the quasi-static
scheduler implemented in this work relies on special array hardware to determine
the size of each time-slice. The hardware detects stall conditions on the array and
triggers the run-time reconfiguration engine to go to the next time-slice.

36



Stall conditions, which includeemptyinput buffers andfull output buffers, im-
pede any progress of the resident subgraph. The reconfiguration script includes
commands to configure CMBs to detect these conditions. When a stall condition
occurs, the array controller interrupts the processor to invoke the run-time array
reconfiguration engine. The engine then configures the array for the next subgraph
in the pre-computed schedule. Experiments have shown this simple mechanism
to be effective and inexpensive. A typical subgraph may run anywhere from ten
thousand to one hundred thousand cycles, hence cycle-precise interrupts are not
required from the stall detection. A small latency of 10–100 cycles in reporting
can easily be tolerated, permitting a simple hardware implementation.

The stall detect hardware allows the scheduler to adapt gracefully to dynamic
token emission and consumption rates of compute pages and the processor. The
processor executes control-dominated parts of an application and effectively acts
as a very dynamic, unpredictable compute node that exchanges data tokens with
the part of the computation running on the reconfigurable array.

The fully dynamic scheduler in Section 3.3 uses a fixed size time-slice for the
Timeslice Sizingstep and analyzes page activity inSequenceandResource Alloca-
tion at run-time. In contrast, the quasi-static scheduler with hardwarestall detect
analyzes CP activity inTimeslice Sizingas the application runs and computes the
schedule at load-time by predicting application behavior from its graph topology
and profiled rates. Furthermore, with stall detect, the quasi-static scheduler uses
buffer sizingto control subgraph execution time between scheduler actions,i.e.
to actively vary time-slice size to manage array reconfiguration overhead as Sec-
tion 2.3.1 describes.

3.4.3 Quasi-Static Scheduler Implementation

General System Tool Flow

The quasi-static scheduler consists of a static schedule generator and a run-time
reconfiguration engine as shown in Figure 3.5. The modules of the quasi-static
scheduler are similar to those of the dynamic scheduler in Figure 3.3. Rather than
running in the critical scheduling loop, they are factored into two components such
that certain tasks are performed less frequently than every time-slice. The sched-
uler inner loop,i.e. the work that incurs run-time overhead at every time slice, is
thus substantially reduced.

The infrequently running component is the schedule generator. It analyzes the
virtual page graph plus the profile information from previous application runs to
produce a schedule in the form of a script of array reconfiguration commands. The
frequently running component, the inner loop, is the reconfiguration engine, which
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Figure 3.5: Quasi-Static Scheduler: module flow in static and run-time compo-
nents.

oversees graph execution by issuing script commands to the hardware. Particular
differences from the dynamic scheduler are as follows:
• Query Array Statedetects only the “done” signals from nodes.
• Deadlockdetection and resolution are not implemented, keeping the system

flow simple for experiments with resource allocation algorithms. Note, how-
ever, that deadlock detection remains inexpensive in the quasi-static scheduler,
requiring only page activity counters in hardware and minimal house-keeping
in software. Resolving abufferlock, which is infrequent, is expensive and typi-
cally requires regenerating a schedule.
• ScheduleandResource Allocationare performed by the schedule generator.
• Reconfigureis replaced by a small configuration script execution engine.

By simplifying or eliminating most of run-time components, the quasi-static
scheduler incurs on average onlyone eighthof the per-time-slice run-time over-
head of the fully dynamic implementation. The following section discusses more
comprehensive results.

Static Schedule Generator

The static schedule generator analyzes the compute graph and the application ex-
ecution profile to compute an array reconfiguration script. ThePartition mod-
ule performs temporal partitioning of the compute graph and computes the prece-
dence constrained node sequence.Resource Allocationmaps the virtual compute
nodes onto array hardware and allocates CMB memory forstitch segments and
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Time-slice
Array Resource 1 2 3
CP0 A E
CP1 B C D
CMB0 K[0:10] M[10:20] M[10:20]
CMB1 L[0:20] L[0:20] K[20:30]
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CP1CMB1

CMB0

CMB0

CP0

CP1

Time-slice 1 Time-slice 2 Time-slice 3
CMB1

move K to CMB1

The compute graph above is temporally partitioned to run in 3 time-slices. A static schedule table

shows ordered virtual nodes assigned to array resources. Each row corresponds to a compute page

(CP) or a configurable memory block (CMB), and each column represents a time step. Segments are

annotated with their locations in CMBs.

Figure 3.6: An example of a static schedule.

user-specified memory blocks. Chapters 4 and 5 analyze these modules in detail.
The last moduleGenerate Reconfiguration Scriptemits array reconfiguration com-
mands arranged to maximize parallel configuration of nodes on the array.

The static schedule generator produces a schedule describable as a table con-
taining a fixed sequence of resource mappings shown in Figure 3.6. Each col-
umn represents a time-slice. Each row corresponds to a physical array component,
namely a compute page (CP) or configurable memory block (CMB). The table also
contains a CMB memory location for each segment. For simplicity, the table does
not show the CMB locations that store the the register state, input FIFO contents
and configuration bit-streams for pages that are inactive. Converting the schedule
table into a sequence of array reconfiguration actions requires additional analysis,
especially to take advantage of SCORE array capability to reconfigure multiple
CPs in parallel. Refer to Section 2.2 for details.

To simplify the job of the run-time reconfiguration engine, the schedule emitted
by the static schedule generator is a script of reconfiguration commands, instead of
a table. The commands are arranged to minimize resource conflicts to reconfigure
as many CPs as possible in parallel. Because all scheduling decisions with the
exception of the timeslice length are precomputed, the script minimizes the run-
time processing.
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17 XFERPRIMARYTOCMB [addr = 1] ----> CMB0[addr = 21680]
18 XFERPRIMARYTOCMB [addr = 0] ----> CMB1[addr = 0]
19 XFERPRIMARYTOCMB [addr = 3] ----> CMB1[addr = 62640]
20 LOADPAGECONFIG CMB1[addr = 0] ----> CP0.config
21 LOADSEGMENTFIFO CMB0[addr = 1200] ----> CMB0.fifo
22 LOADPAGESTATE CMB1[addr = 0] ----> CP0.state
23 LOADPAGEFIFO CMB1[addr = 0] ----> CP0.fifo
24 SETSEGMENTCONFIGPOINTERS CMB0
25 CHANGESEGMENTMODE CMB0.mode = SCORE_CMB_SEQSINK
26 DETECTFULL 1
27 DETECTDONE 0
29 STARTSEGMENT 0
30 STARTPAGE 0
31 RUNUNTIL

32 DUMPPAGESTATE CP0.state ----> CMB1[addr = 0]
33 DUMPPAGEFIFO CP0.fifo ----> CMB1[addr = 0]
34 LOADPAGECONFIG CMB0[addr = 21680] ----> CP0.config
35 LOADPAGESTATE CMB0[addr = 21680] ----> CP0.state
36 LOADPAGEFIFO CMB0[addr = 21680] ----> CP0.fifo
37 CHANGESEGMENTMODE CMB1.mode = SCORE_CMB_SEQSINK
38 DETECTFULL 2
39 CHANGESEGMENTMODE CMB0.mode = SCORE_CMB_SEQSRCSINK
40 DETECTEMPTY 1
43 STARTSEGMENT 1
44 STARTSEGMENT 0
45 STARTPAGE 0
46 RUNUNTIL

47 DUMPSEGMENTFIFO CMB0.fifo ----> CMB0[addr = 1200]
48 DUMPPAGESTATE CP0.state ----> CMB0[addr = 21680]
49 DUMPPAGEFIFO CP0.fifo ----> CMB0[addr = 21680]
50 LOADPAGECONFIG CMB1[addr = 42160] ----> CP0.config
51 GETSEGMENTPOINTERS CMB[0]
52 LOADSEGMENTFIFO CMB0[addr = 43360] ----> CMB0.fifo
53 LOADPAGESTATE CMB1[addr = 42160] ----> CP0.state

Figure 3.7: An excerpt from a reconfiguration script used to schedule a four com-
pute page graph onto a small array of 1 CP + 2 CMBs. Three timeslices are shown.
RUNUNTILcommand makes the array run until interrupted by the stall detection.
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Runtime Reconfiguration Engine

Figure 3.7 contains an example of a reconfiguration script that the Static Schedule
Generator sends to Runtime Reconfiguration Engine. The script contains two types
of commands: control commands and reconfiguration commands.

The Runtime Reconfiguration Engine interprets the control commands as ac-
tions such as execute until the stall condition is detected, execute forN cycles,
jump to a different part of the script,etc. The Engine forwards the reconfigura-
tion commands directly to the global array controller. Table 2.1 contains the list of
actions handled by the controller. The key actions include transfer configuration
bit-stream from a CMB to a CP, set CMB memory bounds registers, and transfer
data between off-chip memory and a CMB.

The work evaluates the application execution time and the overheads of sche-
duling and array reconfiguration by running the Reconfiguration Engine together
with a parameterizable cycle-level SCORE array simulator.

3.4.4 Evaluation

This section is a comparative summary of application performance results obtained
with fully dynamic versus quasi-static schedulers. The applications chosen for
evaluation, JPEG and wavelet codecs, represent a typical workload for the tar-
get platform, a FPGA/processor hybrid. Because they combine data-dependent
dynamic and static data-flow components, these applications are well suited for
performance analysis of the quasi-static scheduler.

Figure 3.8(a) shows the total execution time of the wavelet encoder application
for various array sizes, using the dynamic and quasi-static schedulers. Two sets
of curves are shown: (1) total application execution time on an ideal array simu-
lation (without scheduling overhead), and (2) on a realistic array simulation (with
scheduling overhead). The no-overhead curves demonstrate conclusively that the
quasi-static approach yields higher quality schedules than the dynamic approach.
The execution time reduction is a factor of 4 on average. In addition, as Figure 3.9
shows, the average timeslice scheduling overhead for the quasi-static scheduler is
smaller than dynamic scheduling overhead by a factor ranging from 6 to 12.

Figure 3.8(b) shows the total execution time of the wavelet encoder, with sche-
duling overhead, for several types of schedulers. The curve marked “Exp. Dy-
namic” represents an estimate of the application execution time that would result
only from reductions in run-time scheduling overhead, and not improvements in
scheduling quality. The so-calledstaticscheduler shown in the graph is a simple
variation on the quasi-static scheduler where stall detection is disabled, so as to use
only fixed time-slices. This variation represents point2 in Figure 3.1, a more static
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Figure 3.8: Wavelet Encoder: Comparison of total application execution time un-
der different schedulers.

scheduler. Comparing execution times for the quasi-static and static schedulers,
we find that the stall-detect feature contributes a factor of about 2 to 3 in improved
performance of the quasi-static scheduler.

Interestingly, the fully static scheduler outperforms the dynamic scheduler.
Both use the fixed time-slice model, with identical time-slices (250,000 cycles),
but the static scheduler gains an edge from its global rather than greedy analysis.
Clearly, the perceived advantages of the fully dynamic scheduler, such as the abil-
ity to adapt scheduling decisions to match data-flow patterns, are not realized at
a feasible scheduling granularity. The timeslice size is constrained by the large
scheduling overhead that ranges from 50 to 150 thousand cycles per timeslice.

The superior scheduling quality of the quasi-static scheduler can be attributed
to several factors:
• graph topology: the quasi-static scheduler has theglobal view of the graph

topology, where as the fully-dynamic scheduler is limited to the “frontier” of
the breadth-first search.

• scheduling decisions: the quasi-static scheduler uses application execution
profile to predict graph behavior, making an educated guess. The dynamic
scheduler adapts its scheduling decisions based on array state.
• timeslice sizing: the quasi-static scheduler employsfine-grainedhardware

supportedstall detectto automatically adapt timeslice size to changes in an
application, where as the dynamic scheduler uses a fixed time-slice.
Table 3.1 summarizes total execution times for all four applications evaluated.

42



Wavelet Enc Dynamic Sched Ave TS Overhead

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

6 8 10 12 14 16 18 20 22 24 26 28 30

Array Size (CP/CMB pairs)

A
ve

 T
S 

O
vh

d 
(K

C
yc

le
s)

Conf Ovhd
Sched Ovhd

(a) Dynamic Scheduler

Wavelet Enc QStatic Sched Ave TS Overhead

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

6 8 10 12 14 16 18 20 22 24 26 28 30

Array Size (CP/CMB pairs)

A
ve

 T
S 

O
vh

d 
(K

C
yc

le
s)

Conf Ovhd
Sched Ovhd

(b) Quasi-Static Scheduler

Figure 3.9: Wavelet Encoder (30 pages): comparison of average timeslice over-
head.

The summary contains the results for the dynamic, the fully static, and the quasi-
static schedulers. The complete tables are available in Section B.1 of the Appendix.
In comparison to the dynamic implementation, the quasi-static scheduler greatly
reduces the fraction of the execution time attributable to scheduling overhead from
30–40% down to 5–10%.

To compare the application execution times obtained with the static schedulers
versus the dynamic scheduler, the table contains speedups. Speedups are the reduc-
tions in application execution time versus the dynamic scheduler,i.e. the speedup
for the static scheduler is the ratio of dynamic real and static real execution time.
For the quasi-static scheduler it is the ratio of dynamic real and quasi-static real.
Notice that speedups are greater on the smaller reconfigurable arrays with limited
resources, where improved scheduling quality and efficiency are more critical.
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Wavelet Encoder (30 pages)
6 5.968 7.324 18.5% 4.144 0.795 0.859 7.5% 1.77 8.52
8 4.166 5.400 22.9% 2.887 0.619 0.683 9.3% 1.87 7.91
12 2.142 3.014 28.9% 1.662 0.508 0.560 9.3% 1.81 5.38
14 1.872 2.754 32.0% 1.595 0.465 0.513 9.3% 1.73 5.37
18 1.086 1.757 38.2% 1.067 0.459 0.503 8.6% 1.65 3.50
20 0.827 1.387 40.4% 1.025 0.441 0.487 9.3% 1.35 2.85
24 0.776 1.378 43.7% 0.942 0.407 0.461 11.8% 1.46 2.99
26 0.774 1.410 45.1% 0.956 0.413 0.453 8.9% 1.47 3.12
30 0.275 0.461 40.2% 0.442 0.412 0.433 4.9% 1.04 1.06

Wavelet Decoder (30 pages)
6 9.659 11.631 17.0% 3.275 0.812 0.846 4.0% 3.55 13.75
8 7.403 9.137 19.0% 2.613 0.721 0.753 4.3% 3.50 12.13
12 6.227 8.187 23.9% 1.887 0.608 0.637 4.5% 4.34 12.86
14 5.125 6.887 25.6% 1.185 0.530 0.553 4.1% 5.81 12.46
18 1.991 2.803 29.0% 1.095 0.511 0.534 4.3% 2.56 5.25
20 2.543 3.683 30.9% 1.034 0.497 0.519 4.4% 3.56 7.09
24 1.126 1.717 34.4% 1.030 0.499 0.520 4.1% 1.67 3.30
26 0.739 1.167 36.7% 1.044 0.517 0.539 4.0% 1.12 2.17
28 0.369 0.536 31.2% 0.505 0.479 0.498 3.7% 1.06 1.08

JPEG Encoder (13 pages)
4 4.832 6.368 24.1% 6.756 2.171 2.341 7.3% 0.94 2.72
5 7.134 9.086 21.5% 3.460 1.400 1.479 5.3% 2.63 6.15
6 6.458 8.539 24.4% 4.682 1.427 1.516 5.9% 1.82 5.63
8 1.655 2.349 29.6% 3.173 1.278 1.360 6.0% 0.74 1.73
9 1.672 2.406 30.5% 3.216 1.012 1.052 3.8% 0.75 2.29
10 1.635 2.308 29.2% 2.179 0.955 0.980 2.6% 1.06 2.36
12 2.621 3.678 28.7% 2.194 0.958 0.991 3.3% 1.68 3.71
13 0.797 0.939 15.1% 0.899 0.865 0.879 1.6% 1.04 1.07

JPEG Decoder (12 pages)
3 10.672 13.312 19.8% 6.972 2.836 3.004 5.6% 1.91 4.43
4 5.925 8.010 26.0% 4.851 1.580 1.701 7.1% 1.65 4.71
5 5.951 7.580 21.5% 4.949 1.666 1.796 7.2% 1.53 4.22
7 1.860 2.589 28.2% 1.919 1.153 1.192 3.3% 1.35 2.17
8 1.651 2.196 24.8% 2.114 0.946 0.979 3.4% 1.04 2.24
9 1.667 2.260 26.2% 2.084 0.942 0.975 3.4% 1.08 2.32
11 1.623 2.518 35.5% 2.076 0.933 0.965 3.4% 1.21 2.61
12 0.796 0.910 12.6% 0.889 0.856 0.869 1.5% 1.02 1.05

Table 3.1: Execution time summary for four applications comparing the scheduler
performance. For the dynamic and the quasi-static schedulers, the table shows the
percentage of time consumed by the scheduler overhead. For the static and the
quasi-static schedulers, the tables also shows the execution time reduction relative
to the fully dynamic scheduler. 44



Chapter 4

Temporal Partitioning

Partitioning is the key component that determines scheduling quality. It is the first
step the static schedule generator performs. It divides a virtual page compute graph
into schedulable subgraphs to be time-multiplexed on the reconfigurable array.

In SCORE, co-scheduling of neighbor compute nodes is advantageous because
it creates compute page pipelines and effectively exploits computation and commu-
nication parallelism in hardware. However, an I/O token rate mismatch between
neighbors could result in a serious under-utilization of array hardware and therefore
increase application execution time. The static schedule generator predicts applica-
tion behavior by using graph topology and node token emission and consumption
rates obtained through profiling. With this information, the scheduler attempts
to improve application performance by computing near-optimal graph partitioning
that maximizes array hardware utilization.

4.1 Page Activity and Application Performance

Recall the SCORE compute page execution semantics discussed in Section 1.1.
A compute page executes only when tokens appear on all inputs required by the
current state of its FSM. This is similar to the blocking read in the conventional
processor code. On any clock cycle, a compute page either runs or stalls. If the
page runs, it consumes the tokens from the required inputs, pushes them through
the datapath and emits computed data. If the page stalls, it waits for tokens to arrive
at required inputs.

Compute page execution semantics depart from those for SCORE operators
because unlike operators pages do not implement non-blocking data token emis-
sion (non-blocking write). The compute page can only emit a token on a stream,
when the streaming hardware has available space to accept the token. A reconfig-
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urable array has a finite, limited stream token buffering capacity in the interconnect
pipeline registers. The consequence of implementing an application on such a de-
vice is that a page stalls if the downstream page is a slow token consumer that
exerts back-pressure through the hardware streaming interface.

Section 2.1 discussedbufferlockas one of the consequences of implementing
applications that assume unbounded stream capacity on a device with finite re-
sources. However,bufferlockis a rarely occurring condition and is not a problem
here because most applications do not assume unbounded stream capacity. The
limited network buffering capacity does not present a problem for the scheduler.
However, it sets an upper bound on the execution rate of any connected set of co-
resident compute pages to be the same as the most active page in the set, the one in
the computational critical path.

To discuss reconfigurable array resource activity and the total application ex-
ecution time, let us identify the relationship between these parameters. The fol-
lowing section examines several simple scenarios of temporal graph partitioning
and defines the necessary terms. The subsequent section then continues to develop
an analytical model that relates array resource activity to the application execution
time and guides the temporal partitioning algorithms.

4.1.1 Fundamentals and Metrics

SCORE Graph Temporal Partitioning with the goal to minimize execution time is
an NP-hard optimization problem. Note that this work treats temporal partitioning
separately from the resource allocation problem, the subject of the next chapter.
The goal of temporal partitioning is to minimize theideal application execution
time, where ideal indicates a system without scheduling and array reconfiguration
overheads. The assumption is that the minimumideal time results in the minimum
realistic application run time, where all overheads are included. The ramifications
of this approach are discussed at the end of this chapter.

Consider a fully spatial implementation of a simple three compute page appli-
cation as shown in Figure 4.1(a). All pages are resident on the array at the same
time. Each page is annotated with an input token consumption rate of 1 token per
firing (tpf) and an output token production rate of 0.1 token per firing. This frac-
tional production rate simply implies that a token is produced once per ten page
firings because data tokens are atoms. As the previous chapter described, the I/O
page rates are obtained by profiling previous application runs.

Figure 4.1(a) shows under each node the expected node firing rates as de-
termined by the balance equations from Synchronous Dataflow (SDF) schedu-
ling [BML96]. Expectednode firing rateFn is defined as the number of times per
cycle that noden can fire assuming the presence of input data tokens and output
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Figure 4.1: The simple example shows token consumption and production rates
measuredtokens per firing(tpf) and expected page firing rates infirings per cycle
(fpc).
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buffering space for the subgraph where noden is resident.
For the graph on Figure 4.1(a), theexpectednode firing rates are 1, 0.1, and

0.01 firings per cycle (fpc) for nodesA, B, andC respectively. The rates illustrate
that nodeA is the most active of three and critical in that it determines the overall
array activity in the implementation. This is because no node can fire more than
once per cycle. NodeA thus determines the application execution time of 1000
cycles. Not surprisingly, 1000 cycles is the same as the number of input tokens,
where the pipeline fill time and drain time are ignored for simplicity.

Let us look at the time-multiplexed implementations. Figure 4.1(b) shows one
way to partition the three compute page graph for an array with only two physical
compute pages.A is the only node in the first timeslice, and its firing rate is the
maximum 1 firing per cycle. The nodes in the second timeslice execute indepen-
dently of nodeA, and thus their firing rates go up to 1 and 0.1 firings per cycle
for B andC respectively. Here, nodeB is the critical node that determines overall
array activity. The total execution time is 1100 clock cycles as shown in the figure.

Figure 4.1(c) shows the other way to partition the same graph. Here, nodesA
andB are co-resident while nodeC runs on its own. This arrangement reduces the
total execution time down to 1010 cycles.

4.1.2 Performance Model

This section establishes the relationship between I/O token flow rates, expected
page firing rates, and the application performance. Temporal partitioning algo-
rithms use this model to evaluate their results.

Each streams in a SCORE compute graphG = (V,E) has the token pro-
duction ratersrc(s) and the token consumption ratersnk (s), obtained by profiling
previous runs of the application. The token rates range from 0 to 1 tokens per firing
(tpf). In a fully spatial implementation, each compute noden has an expected fir-
ing rateFn ∈ (0, 1], determined by the token flow rates intrinsic to the application.
The page firing rates are computed with the balance equation:[

∀s∈E .Fsrc(s)rsrc(s) = Fsnk(s)rsnk (s)
]
∧ [∀n∈V .Fn ≤ 1] (4.1)

Expectednode firing rateFn is the upper bound on the node’s ability to fire in a
graph, constrained by the application algorithm that dictates the token flow rates.

Although, a node firing rate on its own does not determine the application
execution time, a metric such as the average firing rate of all array compute pages
does. Recall from Table 2.2 thatts(i) represents the set of compute nodes and
streams in the timeslicei. A node’s firing rate in the timeslicei is bound by the
most active node in that partition,i.e. the expected firing rate of the noden is
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normalized to the most active node:

F ts(i)
n =

Fn

maxm∈ts(i) {Fm}
, if n ∈ ts(i) (4.2)

As was mentioned previously, this rate assumes the presence of input tokens to
the subgraph scheduled in timeslicei and the availability of the buffer space to
emit results. Neither is an issue. The input tokens to be processed come from
stitch buffers that connect timeslicei to the timeslicei − 1. The buffer space to
store intermediate computation results is available in thestitchbuffers that connect
timeslicesi with i + 1.

The array activity during timeslicei is the average CP firing rate. It can be
computed with

Ats(i) =
1
P
×
∑

n∈ts(i)

Fn

maxm∈ts(i) {Fm}
(4.3)

which can be rearranged as

Ats(i) =
1
P
× 1

maxm∈ts(i) {Fm}
×
∑

n∈ts(i)

Fn (4.4)

Computing the array activity during the entire application execution involves
more than averaging the activities of individual timeslices. The timeslice length
varies, and therefore the total array activity is a weighted sum of timeslice activi-
ties. To compute timeslice length, recall from Section 2.3.1 that to efficiently utilize
CMB memory the buffer sizesBi should be directly proportional to the ratespi of
the streams they buffer (Equation 2.8):

∀i6=j

(
pi

Bi
=

pj

Bj

)
(4.5)

If streams ∈ ts(i), the length of the timeslicei can be defined in terms of the
computed stream buffer sizeBj :

Tts(i) =
Bs

rsnk (s)×
Fsnk(s)

maxm∈ts(i){Fm}

(4.6)

which specifies that the length of the timeslice is the number of cycles required to
consume allBs tokens from the stream. The denominator of the fraction is the rate
of token consumption adjusted by the expected firing rate of the nodesnk(s).
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Equation 4.6 serves as the base to redefineTideal, first defined in Equation 2.6:

Tideal =
∑

i∈[1,S]

Tts(i) (4.7)

=
∑

i∈[1,S]

Bs

rsnk (s)×
Fsnk(s)

maxm∈ts(i){Fm}

(4.8)

With the help ofTts(i) andTideal, the array activity during the entire application
execution is defined as a weighted sum of CP activities for each timeslice:

A =
∑

i∈[1,S]

Tts(i)

Tideal
×Ats(i)

=
1

Tideal
×
∑

i∈[1,S]

Bs

rsnk (s)×
Fsnk(s)

maxm∈ts(i){Fm}

×
∑

n∈ts(i) Fn

P maxm∈ts(i) {Fm}

=
1

Tideal
×
∑

i∈[1,S]

(
Bs

rsnk (s)× Fsnk(s)
×
∑

n∈ts(i) Fn

P

)
(4.9)

The last equation demonstrates the intuitive, inverse relationship between the aver-
age array activityA and the application execution timeTideal.

This model evaluates the temporal partitioning quality of the algorithms in this
work. To compute the expected array activity, the static schedule generator com-
putes the relative buffer sizes,Bi, using the Equation 4.5. ThenTideal is computed
using Equation 4.8, and finally, the array activityA is calculated with the model in
Equation 4.9.

Let us revisit the examples in Figures 4.1(b) and 4.1(c) to compute average
array activityA for both scenarios.

A1 =
1

1100
×
(

1000× 1
2

+ 100× 1 + 0.1
2

)
= 0.504 (4.10)

A2 =
1

1010
×
(

1000× 1 + 0.1
2

+ 10× 1
2

)
= 0.549 (4.11)

(4.12)

As expected, the second temporal partitioning results in the higher array CP utili-
zation and produces shorter application execution time.

4.1.3 Measuring Array Activity

The model in the previous section estimates the average array activity by the sche-
duling algorithms in the system. However, the activity can also be measured by the
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SCORE array simulator to evaluate scheduling quality for a given device size. The
array simulator records the number of cycles each compute page (CP) fired during
execution, and computes anobservedaverage CP utilizationU :

U =
∑P

i=1 Ui

T × P
(4.13)

whereP is the the number of CPs on the array,Ui is the number of cycles that CP
i fired, andT is the total application execution time.

4.2 Algorithms for Temporal Partitioning

While total application execution time depends on the size of the input dataset, av-
erage CP utilization depends only on the schedule. Co-resident pages and the token
flow rate mismatches between them affect the schedule quality. ThePartitioneral-
gorithms use the model in Equation 4.9 to estimate average CP utilization for a
given candidate partitioning set and attempt to maximize utilization. The goal is
not to achieve100% CP utilization but to attain the highest possible CP utilization
for a specific array size. This results in the lowest total application execution time.

A temporal partitioning algorithm should also avoid breaking any cycles in the
dataflow graph. The exact behavior of an application is not known to the scheduler,
and thus it must assume that there exists a close dependency between compute
pages and memory segments that form a dataflow cycle. Therefore, if the cycle
is split between temporal partitions, every communication between the nodes in
different timeslices involves a costly reconfigurable array context switch.

Optimal graph partitioning under multiple independent simultaneous constraints
such as CP/CMB count is an NP-hard optimization problem. To understand the
problem in detail, this work develops two heuristic partitioners, which are com-
pared against an optimal exhaustive search partitioner. Before we delve into details
of the heuristics, let us recall the way to evaluate hardware resource requirements
for a temporal partition. A temporal partition requires: one CP per virtual com-
pute page, one CMB per user-defined memory segment, and one CMB per each
stream that cross the partition boundary to hold thestitchbuffer with intermediate
computation results.

4.2.1 Topological Partitioner

Topological partitioner uses a simple greedy packing algorithm with a precedence
constrained graph traversal order. Essentially, the algorithm starts by topologically
sorting graph nodes, then iterates over the resultant node list forming schedulable
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1. Graphs

• Graph of compute nodes (pages and segments):Gn = (Vn, En)
• Graph of compute node clusters:Gc = (Vc, Ec), wherec ∈ Vc is a

cluster, or a set of compute graph nodes. All clusters are nonempty|c| ≥
1.

2. Temporal Partition Tables

• An array of node sets, s.t.Pn[k] is the set of nodes in temporal partition
k.

• An array of cluster sets, s.t.Pc[k] is the set of clusters in temporal parti-
tion k.

3. Resource Allocation Map

• CP Resource MapCP [ts][i] represents the contents ofCPi in the times-
lice ts. The entry can contain either a compute page or∅, if it is
available for allocation. This entry has an attributeCP [ts][i].locked ∈
[true, false], which indicates whether this entry can be evicted or not.
• CMB Resource MapCMB[ts][i][start..stop] represents the contents of

the address range(start..stop) of CMBi in the timeslicets. Possible
operations include checking if the range exists and intersecting one ad-
dress range with another.CMB[ts][i][].locked indicates whether this
entry can be evicted by the resource allocation algorithm. Another at-
tribute isCMB[ts][i][].entry type = {segment, config}. segment
indicates that the CMB memory block contains a user-specified segment
or astitchsegment.config indicates that the block contains a configura-
tion bitstream and a context for a virtual compute page.

Figure 4.2: Key data structures in the scheduler algorithms
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subgraphs. Possessing only a very limited global view of the entire graph, this
algorithm improves the partitioning quality by relying on two special clustering
passes: cycle clustering and minimize IO clustering.

Cycle Clustering. The first pass identifies the dataflow cycles in the compute
graph. It clusters the nodes that belong to the same cycle together, turning the
original compute graph into the directed acyclic graph (DAG) of node clusters. The
following pseudo-code demonstrates the basic operation of the cycle clustering.
The functionCOMPUTE CYCLES uses depth-first search to find cycles in the
compute graph [CLR90]. It returns a list of cycles found, which is used to construct
the graph of clustersGc = (Vc, Ec). The algorithm creates simple single-node
clusters for those compute nodes that do not belong to a cycle.

1: Function CLUSTER CYCLES (Gn = (Vn, En))
2:

3: # Compute the list of loops in theGn

4: # Each cycle inCycleListis a set of nodes
5: CycleList ⇐ COMPUTE CYCLES(Gn)
6:

7: for all n ∈ NodeGraph do # mark all nodes as unclustered
8: Clustered [n]⇐ false
9: end for

10:

11: Gc = (Vc, Ec)⇐ (∅, ∅)
12: for all cycle ∈ CycleList do
13: cluster ⇐ ∅
14: for all n ∈ cycle do
15: Clustered [n]⇐ true
16: cluster.ADDNODE(n)
17: end for
18: # addclusterto the cluster graph data structure
19: # establish edges to neighbor clusters
20: Gc.ADDCLUSTER(cluster )
21: end for
22:

23: for all n ∈ NodeGraph do # all nodes that are not in a cycle get own cluster
24: if Clustered [n] = false then
25: cluster ⇐ ∅
26: cluster.ADDNODE(n)
27: Gc.ADDCLUSTER(cluster )
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28: end if
29: end for
30:

31: return Gc

Minimize I/O clustering. The second pass strives to decrease the number of
streams crossing temporal partition boundary. Because this partitioner traverses the
graph in topological order, its view of the entire graph is limited. This clustering
pass merges two neighbor clusters if the resulting cluster I/O stream count is lower
than the aggregate I/O stream count of the two separately. This helps eliminate
undesirable, high bandwidth cuts in the compute graph.

The algorithm takes the cluster graphGc = (Vc, Ec) obtained from the cycle
clustering, physical compute page countP , and CMB countY . It iterates through
all cluster nodes, merging together those neighbors where a cluster join would
reduce I/O stream count. This process is repeated until no more joins are possible.

1: Function CLUSTER MIN IO (Gc = (Vc, Ec), P , Y )
2:

3: # repeat join passes until no more nodes can be joined
4: repeat
5: # attempt to find clusters that can be joined w/o exceeding array size
6: JoinCount⇐ 0
7: for all n ∈ Vc do # iterate through all clusters
8: for all (n, l) ∈ Ec do # iterate through all downstream neighbors ofn
9: # compute the number of IOs in clustern

10: NeighborSet⇐ {m|(n, m) ∈ Ec} ∪ {m|(m,n) ∈ Ec}
11: OldIOCount⇐ |NeighborSet|
12: # compute resource and IO count, ifn andl join
13: (cps, cmbs,NewIOCount)⇐ CHECK JOIN(n, l)
14: if cps ≤ P ∧ cmbs ≤ Y ∧NewIOCount < OldIOCount then
15: Gc.JOIN CLUSTERS(n, l) # join clusterl to n
16: Gc.DELETE(l)
17: JoinCount⇐ JoinCount + 1
18: end if
19: end for
20: end for
21: until JoinCount = 0
22: return Gc

The partitioner computes the arrayPc[] using the cluster graph obtained from
the clustering passes above. The array contains all members of the temporal parti-
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Figure 4.3: Example to illustrate the need for the two step topological partitioning.
To make the first partition, the topological algorithm attempts cuts 1–5, but rolls
back to cut 4 to satisfy CMB count constraint.

tions, such thatPc[k] is the set of clusters in the temporal partitionk.
Recall that the cycle clustering pass yields an acyclic cluster graph. The Topo-

logical Partitioning algorithm below computes the topological sort (TraversalList)
of clusters, which determines the order the partitioner examines the clusters. A par-
tition expands as the algorithm adds clusters one at a time from theTraversalList.
Because this process is constrained only by the CP count (lines 11–18), the algo-
rithm attempts to pack as many clusters in a partition as possible, improving the
expected array activity and utilization. However, since the pseudo-code lines 11–
18 compute the partition without considering CMB count, the partition may not
fit on the array. The subsequent part of the algorithm (lines 20–29) removes the
clusters from the partition one at a time in the reverse topological order until both
CP and CMB constraints are satisfied. This guarantees that the resulting partitions
meet the precedence constraints. The algorithm repeats these two operations until
all graph nodes belong to a partition.

The need for this two step process can be illustrated with an example in Fig-
ure 4.3. Assume that the array contains 4 physical compute pages (CPs) and 2
configurable memory blocks (CMBs). TheTraversalList forces the compute
nodes to be considered in the order{A,B, C, D, E, F}. A new cut is formed af-
ter a node is removed from theTraversalList. The algorithm first makes cuts 1
through 5, filling all four array CPs (lines 11–18). Then it rolls the partition back to
3 pages(A,B, C) to satisfy the CMB count constraint (lines 20–29). The second
temporal partition expands starting from node D and includes the remaining three
nodes in the graph.

Unless the first step in the algorithm ignores CMB count, topological partition-

55



ing either leads to inefficient results by under-utilizing array CPs, or as the case is
in this example with only 2 CMBs, simply fails.

1: Function PERFORM TOPO PARTITION (Gc = (Vc, Ec), P , Y )
2:

3: # Compute list of clusters sorted in topological order
4: TraversalList⇐ TOPO SORT(Gc)
5: currT imeslice⇐ 0
6: while SIZE(TraversalList) > 0 do
7: availCP ⇐ totalCP # keep track of available resources
8: availCMB ⇐ totalCMB
9: schedClusterList⇐ ∅ # list of clusters that may be scheduled

10:

11: # first, schedule all possible pages even if availCMB becomes less than 0
12: # this makes sure that compute pages are packed as much as possible
13: while availCP > 0 ∧ SIZE(TraversalList) > 0 do
14: cluster ⇐ POP (TraversalList)
15: PUSH(schedClusterList, cluster)
16: # available resources if allschedClusterList clusters are co-resident
17: (availCP, availCMB)⇐ GET AV AIL RES(schedClusterList, P, Y )
18: end while
19:

20: # The clusters inschedClusterList do not exceed the CP count,
21: # but may not be schedulable because they may require more CMBs
22: # than available. Remember that a CMB is required for each stream
23: # crossing the timeslice boundary. Unschedule from the back of
24: # theschedClusterList until the set is schedulable.
25: while availCP < 0 ∨ availCMB < 0 do
26: cluster ⇐ POP (schedClusterList)
27: PUSH(TraversalList, cluster)
28: (availCP, availCMB)⇐ GET AV AIL RES(schedClusterList, P, Y )
29: end while
30:

31: Pc[currT imeslice]⇐ nodeList
32: currT imeslice⇐ currT imeslice + 1
33: end while
34: return Pc

Algorithm Complexity Analysis. The functionCLUSTER CYCLES per-
forms a depth-first search of the compute graph to identify all its cycles. Then it
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enumerates all nodes while clustering them. The complexity of the algorithm is
linearO(|En|+ |Vn|).

The loops on lines 7 and 8 of theCLUSTER MIN IO algorithm make|Ec|
total repetitions because every edge is visited once. There must be at least one join
made for the main loop on lines 7–20 to repeat. Since every cluster join reduces
the total number of clusters by 1, there can at most be|Vc| iterations of therepeat
– until loop. This results in the worst case algorithm complexity ofO(|Vc|× |Ec|).

The topological sort inPERFORM TOPO PARTITION is implemented with
a depth-first search, which runs in time proportional toO(|Ec|). The remainder
of the algorithm iterates over the clusters in theTraversalList. In the worst
case, all but the first cluster scheduled in a partition is rolled back in lines 20–29
(|Vc|2). Hence the topological partitioner in the worst case has the complexity of
O(|Ec|+ |Vc|2).

4.2.2 BalancedN -way Mincut

This flow-based mincut partitioning algorithm is based on Wong’s temporal par-
titioning for FPGA circuits [LW98]. Unlike the FPGA circuits, SCORE compute
graphs contain clear precedence constraints. The algorithm below has been adapted
to enforce them. This work considers compute graphs of pages and segments,
where each edge has a capacity of 1. This capacity represents 1 CMB that is re-
quired to buffer the content of the stream that crosses the timeslice boundary. Other
weight assignments are also possible and will be discussed in Section 4.4.

In its core, the algorithm performs a minimum capacity cut on the graph and
examines resulting partitions. The algorithm grows or shrinks the partition with
the nodes of the highest scheduling precedence until the partition fits on the ar-
ray. To grow or shrink a partition, the algorithm augments or evicts a selected
node and repeats the mincut. The partitioner uses the average CP utilization model
(Equation 4.9) to select nodes to move between partitions. Its goal is to maximize
predicted average CP utilization by selecting the candidate to augment or evict that
will improve array utilization for the duration of the timeslice. Once the algorithm
completes a partition, it repeats the partitioning process for the part of the compute
graph that has not yet been scheduled.

Let us look at several specific details ofPERFORM MINCUT PARTITION.
This flow-based mincut algorithm is based on the mincut-maxflow theorem that
states that the maximal amount of a flow is equal to the capacity of a minimal
cut. The algorithm operates by repeatedly augmenting flows from a source to a
target node in the network reaching the maximum flow. The mincut contains a
subset of the capacity saturated edges. One peculiarity about the flow-based mincut
is the direction of the flow. The mincut computed by the flow-based algorithm
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consists of edges that are saturated with the flow from the source to the target
node. The oppositely directed edges do not contribute to the mincut capacity, and
this algorithm takes advantage of this peculiarity.

With the help of special infinite capacity edges, one can invalidate certain cuts
for the flow-based mincut algorithm. Consider the lines 8–10 in the algorithm be-
low. For every edge(n, m) in the original compute graph, the algorithm adds a
special reverse infinite capacity edge(m,n). Since the(n, m) sets the precedence
constraint between its source and sink, a cut along(n, m) is valid since it sched-
ulesn in the current timeslice andm in the subsequent. However, the opposite is
not true. A cut which putsm in the current timeslice andn in the subsequent is
not valid. The infinite capacity edge never saturates and thus does not allow the
MINCUT procedure to emit a cut that violates the precedence constraints.

FunctionPERFORM MINCUT PARTITION begins with a topological sort
of the cluster graph. The topologically sorted list of clusters allows the algorithm to
quickly select the source and the target cluster for the flow-based mincut partitioner.
The code in lines 13–22 drives the partitioner. On every iteration of the loop, the
function COMPUTE PARTITION emits a set of nodes to be scheduled in the
timeslicets and the updatedTopoList, which contains the clusters still waiting to
be scheduled. The loop terminates when the contents of theTopoList fit on the
array.

FunctionCOMPUTE PARTITION plays the key role in this partitioner. It
begins with a mincut that splits the clusters in the graph into two sets. The set on
the side of thesrc cluster (srcClustList) is considered for the partition because
it has higher precedence than the nodes in thetrgt side. The algorithm evaluates
the physical resource requirements of the clusters insrcClustList. If the partition
is too small,i.e. CPs are available, the algorithm augments the partition: (1) all
clusters insrcClustList are merged to thesrc with infinite capacity edges (lines
54–59); (2) a candidate is selected from the nodes on thetrgt side of the partition
(lines 60–75) to provide the highest expected array activity for the partition; (3) the
candidate is merged with thesrc node via infinite capacity edge (lines 80–86); (4)
the mincut partition is repeated.

If the partition is too large, the opposite occurs: the algorithm selects and evicts
a node fromsrcClustList that does not violate precedence constraints and leads
to the highest possible array activity (lines 91–117). Each iteration of the main
algorithm loop merges the chosen clusters via infinite capacity edges to eithersrc
or trgt clusters. The size of the cut returned by theMINCUT function on line
45 increases with each iteration. Therefore, it is possible that a cut exceeds CMB
count. In that case (lines 46–51), the algorithm rolls back to the previous best
solution stored inPrevPart.
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1: Function PERFORM MINCUT PARTITION (Gc = (Vc, Ec), P , Y )
2:

3: # Compute list of clusters sorted in topological order
4: TopoList⇐ TOPO SORT(Gc)
5: for all e ∈ Ec do
6: # Annotate edges with 1 to represent 1 CMB/stream buff requirement
7: w[e]⇐ 1
8: #∞ capreverseedges prevent mincuts that violate precedence
9: NewEdge⇐ Gc.ADD EDGE(snk(e), src(e))

10: w[NewEdge]⇐∞
11: end for
12:

13: ts⇐ 0
14: (availCP, availCMB)⇐ GET AVAIL RES(TopoList, P, Y )
15: # function COMPUTEPARTITION removes the clusters from
16: # the beginning theTopoList. After some number of iterations,
17: # it the contents of theTopoList will fit on array
18: while availCP < 0 ∨ availCMB < 0 do
19: (Pc[ts], T opoList)⇐ COMPUTE PARTITION(Gc, T opoList, w[], P, Y )
20: (availCP, availCMB)⇐ GET AVAIL RES(TopoList, P, Y )
21: ts⇐ ts + 1
22: end while
23: if SIZE(TopoList) > 0 then # the last partition
24: Pc[ts]⇐ TopoList
25: end if
26: return Pc

27:

28:

29: Function COMPUTE PARTITION(Gc, T opoList, w[], P, Y )
30:

31: # a list of “special” edges, which are temporarily added to the graph
32: # and will be removed when the routine exits
33: specialEdgeList⇐ ∅
34: # first and last elmts are the source and target node for the flow based mincut
35: src⇐ FIRST(TopoList)
36: trgt⇐ LAST(TopoList)
37:

38: # In this iterative algorithm, the cuts grow larger in b/w with each iteration.
39: # PrevPart contains the best partition from the previous iteration.
40: PrevPart⇐ ∅
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41: loop
42: # The flow-based mincut algorithm partitionsGc, such thatsrc andtrgt
43: # clusters are in separate partitions. It returns two distinct sets of clusters,
44: # one with the nodes on thesrc side and the other on thetrgt side.
45: (srcClustList, trgtClustList)⇐ MINCUT (Gc, src, trgt, w)
46: # compute available resource if all members ofsrcClustList are scheduled
47: (availCP, availCMB)⇐ GET AVAIL RES(srcClustList, P, Y )
48: if availCMB < 0 then # exceeded CMB reqs (cut is too large)
49: # revert to the previously computed partition, stored inPrevPart
50: break # quit the loop
51: end if
52:

53: if availCP > 0 then # try adding more clusters to the partition
54: for all n ∈ srcClustList do
55: # mergen to src by adding special edge of∞ capacity
56: specialEdge⇐ Gc.ADD EDGE(src, n)
57: w[specialEdge]⇐∞
58: PUSH(specialEdgeList, specialEdge)
59: end for
60: # make a list of valid candidates to augment to the partition
61: # a valid candidate⇒ all predecessors have been scheduled
62: candList⇐ AUGMENT CANDS(trgtClustList, TopoList, P, Y )
63: if SIZE(candList) > 0 then
64: ActivV ec⇐ ∅
65: for all c ∈ candList do
66: # Compute timeslice activity ifc is scheduled withsrcClustList
67: ActivV ec[c]⇐ ARRAY ACTIV(srcClustList ∪ {c}, P, Y )
68: end for
69: end if
70: # it is possible that the original (prior to augmentation) partitioning
71: # is a better choice than the new cuts
72: OrigArrayActiv ⇐ ARRAY ACTIV(srcClustList, P, Y )
73: ActiveV ec[0]⇐ OrigArrayActiv
74: # select a candidate with the highest expected array activity
75: SELECT cand, s.t. ActiveV ec[cand] = maxi{ActiveV ec[i]}
76:

77: # save the current partition in case the next iteration fails
78: PrevPart⇐ srcClustList
79:

80: # Temporarily merge thecand to src, so that the mincut
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81: # performed in the next iteration putssrc andcand in the same partition
82: if cand 6= 0 then
83: specialEdge⇐ Gc.ADD EDGE(src, cand)
84: w[specialEdge]⇐∞
85: PUSH(specialEdgeList, specialEdge)
86: else
87: break # partition is good,OrigArrayActiv was chosen
88: end if
89: else if availCP = 0 then # bulls eye
90: PrevPart⇐ srcClustList
91: else if availCP < 0 then # CP reqs are too high, evict a node
92: for all n ∈ trgtClustList do
93: # Mergen to thetrgt cluster to prevent Mincut algorithm from
94: # separating them in the next iteration.
95: specialEdge⇐ Gc.ADD EDGE(n, trgt)
96: w[specialEdge]⇐∞
97: PUSH(specialEdgeList, specialEdge)
98: end for
99:

100: candList⇐ EVICT CANDS(srcClustList, TopoList, P, Y )
101: if SIZE(candList) > 0 then
102: ActivV ec⇐ ∅
103: for all c ∈ candList do
104: ActivV ec[c]⇐ ARRAY ACTIV(srcClustList− {c}, P, Y )
105: end for
106: # select a candidate with the highest expected array activity
107: SELECT cand, s.t. ActiveV ec[cand] = maxi{ActiveV ec[i]}
108:

109: # Merge thecand to thetrgt node to guarantee that is is evicted
110: # fromsrcClustList in the next iteration.
111: specialEdge⇐ Gc.ADD EDGE(cand, trgt)
112: w[specialEdge]⇐∞
113: PUSH(specialEdgeList, specialEdge)
114: else # nocand can be evicted, go to the previous successful iter.
115: break
116: end if
117: end if
118: end loop
119:

120: # break in the loop goes here.PrevPart contains the last successful
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121: # partition attempt. Now, remove all nodes in the partition from theTopoList.
122: for all n ∈ PrevPart do
123: REMOVE(TopoList, n)
124: end for
125:

126: # Remove all special∞ edges that were used to merge nodes together,
127: # because they could interfere with mincut partitioning in
128: # the subsequent invocations of this routine.
129: for all e ∈ specialEdgeList do
130: Gc.DELETE EDGE(e)
131: end for
132: # return the partition and the updated topologically sorted list of clusters
133: return (PrevPart, TopoList)

PERFORMMINCUT PARTITION is based on Wong’s mincut multi-way
partitioning described in [LW98] in that it repeatedly performs a mincut opera-
tion. Although eachMINCUT algorithm typically requires constructing a com-
plete residual flow network, Wong avoids this by sharing the residual flow network
betweenMINCUT invocations. The residual flow network is thus constructed in-
crementally. This reduces the running time of a single invocation of theCOM-
PUTE PARTITION function to onlyO(|Vc| × |Ec|). Thus the running time of the
entire mincut-based partitioner isO(S × |Vc| × |Ec|), whereS is the number of
temporal partitions andS ≥

⌈
N
P

⌉
.

4.2.3 Exhaustive Search

To obtain a reference for partitioning quality, the system developed in this work
includes an algorithm that examines every valid graph partitioning to find the one
with highest average CP utilization. This algorithm helps evaluate the quality of
the two heuristic partitioners described previously.

In general, the number of candidate schedules the partitioner must examine
grows exponentially with graph size. However, the complexity of the exhaustive
search is largely bounded by graph precedence constraints and simple branch-and-
bound heuristics that avoid clearly inefficient solutions. Nevertheless, computing
optimal partitioning for a specific array size may take hours. For example, for the
30 page wavelet encoder mapped on 6 CP array, the algorithm examines in ex-
cess of 101 million candidates and consumes more than 18 hours on a P3 500Mhz
system.
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Figure 4.4: Wavelet Encoder (30 pages) performance summary for temporal parti-
tioning algorithms.

4.3 Evaluation

This section examines the quality of results for topological and mincut-based par-
titioners. The total application execution time is shown for the ideal reconfigurable
array without reconfiguration or scheduling overhead.

Critical to the quasi-static methodology is the off-line schedule generator’s
ability to accurately predict average array activity. The experiments in this work
show that the static schedule generator predicts themeasuredaverage CP utiliza-
tion with less than 5% error for all applications studied. The results discussed
below were obtained through measurements on the SCORE reconfigurable array
simulator.

Not surprisingly, the plot in Figure 4.4(a) demonstrates that, of all the par-
titioners, the exhaustive search produces the schedule with highest average CP
utilization. A surprising result is that the topological and mincut-based heuristic
partitioners inthe worst caseperform within 17% of the optimal in terms of mea-
sured average array activity across all applications. Another unexpected result is
that neither heuristic partitioner consistently outperforms the other, although they
differ greatly in algorithmic complexity.

Figure 4.4(b) shows wavelet encoder total execution time using the different
partitioners. The expected inverse relationship between the total execution time and
the average CP utilization holds, validating the hypothesis that increased utilization
is a good predictor of reduced execution time.
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Table 4.1 summarizes the comparison between temporal partitioning algorithms.
Refer to the appendix section B.2 for the complete comparison. Table 4.1 shows
the ratio between the execution times for the topological and exhaustive search
partitioners and the ratio between the mincut-based and exhaustive partitioners. In
the worst case, both heuristics have a performance penalty of 60%, while typically
offer application performance within 10% of the ideal.

Recall that the previous chapter reveals that improvements in performance be-
tween dynamic and static schedulers exceed what one would expect purely from
reductions in the scheduler run-time overhead. The performance results show that
the shift to the static scheduling methodology yields improvements in schedule
quality.

These improvements are attributable to the global view that the static schedule
generator has of the compute graph. Rather than focusing on token availability as
the dynamic implementation does, the static scheduler predicts token flow from
application execution profiles. Section 4.1 emphasizes the importance of temporal
partitioning that attempts to improve array activity. The static scheduler generally
makes more accurate decisions about the way to temporally partition the graph.

4.4 Open Issues

The two heuristics employed in thePartition module of the quasi-static scheduler
are by no means all that can be used for effective temporal partitioning. Although
the results in this chapter show that the heuristics perform well on average, it is
possible to study several other options.

Consider the balancedN -way mincut heuristic. The implementation in this
work gave all graph edges the capacity of 1 to perform the min-cut that minimizes
the number of CMBs required to buffer the intermediate computation state. One
can consider using other metrics, such as relative stream buffer sizes to minimize
the total capacity of the requiredstitch buffers. This could potentially improve
resource utilization and help the resource allocation algorithms, the subject of the
following chapter.

This work treats the temporal partitioning problem separately from the resource
allocation problem. Although to obtain the optimal solution to the entire schedu-
ling problem stated in Section 2.3.2, both partitioning and resource allocation must
be solved simultaneously. The reason to separate these is simply to keep the prob-
lems tractable. The ramifications of this approach are unfortunately difficult to
evaluate due to a very large solution space.
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Summary of Temporal Partitioning Algorithms
Execution Time Improvement Measured Array Activity

A
rr

ay
S

iz
e

E
xh

au
st

iv
e

To
po

lo
gi

ca
l

M
in

cu
t

To
po

/E
xh

M
in

/E
xh

E
xh

au
st

iv
e

To
po

lo
gi

ca
l

M
in

cu
t

Wavelet Encoder (30 Pages)
6 375808 424704 409856 1.13 1.09 0.35 0.31 0.32
8 311808 330496 319488 1.06 1.02 0.32 0.30 0.31
10 288000 306944 300544 1.07 1.04 0.27 0.26 0.26
12 285184 289280 297472 1.01 1.04 0.23 0.23 0.22
14 273746 278016 285184 1.02 1.04 0.20 0.20 0.20
16 269881 272640 285184 1.01 1.06 0.18 0.18 0.17
18 268800 272640 280832 1.01 1.04 0.16 0.16 0.16
20 268800 272640 280832 1.01 1.04 0.15 0.14 0.14
22 268800 272640 268800 1.01 1.00 0.13 0.13 0.13

Wavelet Decoder (27 Pages)
6 315217 373094 333201 1.18 1.06 0.38 0.32 0.36
8 295221 391354 323966 1.33 1.10 0.31 0.23 0.28
10 287008 323136 306231 1.13 1.07 0.25 0.22 0.24
12 286004 332647 306256 1.16 1.07 0.21 0.18 0.20
14 272162 435358 306277 1.60 1.13 0.19 0.12 0.17
16 269600 298824 306293 1.11 1.14 0.17 0.15 0.15
18 269592 313954 339066 1.16 1.26 0.15 0.13 0.12
20 269600 282684 272160 1.05 1.01 0.14 0.13 0.13
22 272163 296774 272158 1.09 1.00 0.12 0.11 0.12

JPEG Encoder (13 Pages)
4 1394432 1611008 1394176 1.16 1.00 0.45 0.39 0.45
5 1107712 1624320 1394176 1.47 1.26 0.46 0.31 0.36
6 1116645 1116672 1116672 1.00 1.00 0.38 0.38 0.38
7 1065366 1096704 1065434 1.03 1.00 0.34 0.33 0.34
8 1065364 1072896 1065412 1.01 1.00 0.30 0.30 0.30
9 866254 1072896 1065411 1.24 1.23 0.32 0.26 0.26
10 820408 1072896 1065402 1.31 1.30 0.31 0.24 0.24
11 820392 1072896 1065405 1.31 1.30 0.28 0.21 0.22
12 820397 832492 1065398 1.01 1.30 0.26 0.25 0.20

JPEG Decoder (12 Pages)
3 1784064 1784064 2052864 1.00 1.15 0.53 0.53 0.46
4 1105920 1533696 1533696 1.39 1.39 0.64 0.46 0.46
5 1103104 1103104 1763328 1.00 1.60 0.52 0.52 0.32
6 1063424 1063553 1063424 1.00 1.00 0.45 0.45 0.45
7 1054720 1054720 1054720 1.00 1.00 0.39 0.39 0.39
8 820736 820736 820736 1.00 1.00 0.43 0.43 0.43
9 820736 820736 820736 1.00 1.00 0.39 0.39 0.39
10 820736 820736 820736 1.00 1.00 0.35 0.35 0.35
11 820736 820736 820736 1.00 1.00 0.32 0.32 0.32

Table 4.1: Summary of application performance on an idealized array
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Chapter 5

Resource Allocation

This chapter focuses on the overhead of array reconfiguration. For virtualized
paged application execution to be efficient, the scheduler must contain reconfigura-
tion overheads by carefully managing the two key operations of resource allocation
and buffer sizing.

5.1 Resource Allocation

5.1.1 Analysis

Given a temporally partitioned graph, the scheduler must for each temporal parti-
tion allocate the following: (1) a CP for each page, (2) a memory region in a CMB
for each segment andstitchbuffer, (3) a block of CMB memory to store the state
and configuration for each page, segment, and buffer when that object is not active.
Recall from Section 2.2 that this work assumes single-ported CMB controllers. Al-
though CMB memory could be large enough to fit several user-specified segments
andstitchbuffers, the single controller constraint implies that only one of them can
be active in a given timeslice. This presents an additional restriction for point (2)
above, that no two segments or buffers in a temporal partition can share a CMB.

Section 2.3.1 developed an analytical model to relate execution time to under-
lying architecture parameters and buffer allocation strategies. This model from
Equation 2.10 is repeated below for the reader’s convenience:

Trun = Kmax

∑
1≤j≤S

 max
i∈ts(j)

(pi) +
V

Q

 ∑
i∈ts(j)

[
2Qbi

Wio
f(B,L)

]
+ s(P, Y )Ccp


(5.1)
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Consider the key factors that affect reconfiguration overhead. The first is the buffer
scaling factorQ, which determines the sizes of allocated buffers. The method to
select optimalQ is discussed in Section 5.2. However, this section assumes that
Q value is set and discusses a resource allocation algorithm that maps compute
graph nodes onto CPs and CMBs. The quality of this algorithm translates into the
parametersf(B,L) ands(P, Y ).

These parameters are associated with two competing overheads: off-chip trans-
fer overhead and array reconfiguration overhead—the first and second terms in the
square brackets above. The first parameter0 ≤ f(B,L) ≤ 1 represents a frac-
tion of buffers that on average must spill off chip in a given timeslice. Resource
constraints and the scheduler’s ability to preserve the spatial locality of buffers de-
terminesf . The second parameter1 ≤ s(P, Y ) ≤ P represents the scheduler
ability to take advantage of reconfiguration parallelism in a SCORE architecture.
To optimize results, a resource allocation algorithm must preserve spatial locality
and maximize reconfiguration parallelism.

Spatial Locality. Temporal partitioning cuts the original computation graph
into subgraphs that fit on available hardware. Although each compute page in the
original graph appears inexactly oneof the temporal partitions, thestitchsegments,
inserted between the partitions, reside in two temporal partitions that are not neces-
sarily adjacent in time. To eliminate the need to spill buffer contents, the memory
allocation algorithm must allocate for each stitch segment a single CMB memory
region throughout the entire application execution.

For example, consider a buffer that owns a CMB memory block in timeslices
1 and 3. The scheduler ideally avoids allocating the same or an overlapping block
to any other buffer in timeslices 2, 4 or others. When the memory block is shared
between two or more buffers or user segments, the scheduler must transfer buffer
contents to and from primary memory between timeslices. Reducing the fraction
of buffers that are spilled,f(B,L), allows the system to reduce off-chip memory
transfer overhead.

For the purposes of CMB memory allocation, blocks with CP state and config-
uration bitstreams are treated similarly to stitch segments, and therefore the same
optimization applies to them.

Reconfiguration Parallelism. Distributed CMBs enable parallel CP recon-
figuration. In a system withY CMBs, up toY physical compute pages can be
configured in parallel. The resource allocation algorithm has a goal of maximizing
reconfiguration parallelism by evenly distributing blocks with state and configura-
tion bitstreams among CMBs. This effectively increases the number of CMBs that
can be used as sources of reconfiguration (Y ), which in turn reducess(P, Y ) and
the array reconfiguration overhead.
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5.1.2 Resource Allocation Algorithms

Given temporal graph partitioningPn[1..ts], the resource allocation module of the
static schedule generator first insertsstitchbuffers. Astitchbuffer replaces a stream
that crosses a temporal partition boundary and stores the intermediate computation
state that results from time-multiplexed application execution. The buffer operates
in two modes: as a SINK buffer when co-resident with the stream’s source page
and as a SOURCE buffer when co-resident with the stream’s sink page.

1: Function ADD REQ STITCHES (Pn[], Gn = (Vn, En))
2:

3: for all e ∈ En do
4: if src(e) ∈ Pn[k] ∧ snk(e) ∈ Pn[m] ∧ k 6= m then
5: # this stitch crosses the timeslice boundary
6: # It acts as a sink for data in partitionk and a source in partitionm
7: ADD STITCH BUFFER(Pn[k], mode = SINK)
8: ADD STITCH BUFFER(Pn[m], mode = SRC)
9: end if

10: end for

The resource allocation algorithm uses partitionsPn with stitch buffers to
perform resource allocation. The resource mappings are emitted as two arrays:
CP [ts][k] andCMB[ts][k][a..b]. The first oneCP [ts][k] contains an entry for the
compute node residing inCPk in timeslicets. The second arrayCMB[ts][k][a..b]
contains an entry for a memory block that resides inCMBk in address range(a..b)
in timeslicets. Refer to Figure 4.2 for a detailed description of these data struc-
tures.

The entries inCP [] andCMB[] arrays can belocked, which indicates to the
algorithm that the entry cannot be evicted—it must be resident according to the
temporal partitioning. CMB memory entries can also be of two types:segment
andconfig. The first typesegment indicates that the memory block is allocated
for a user-specified segment or a stitch segment. The second typeconfig indicates
that the memory block contains the CP state and configuration bit-stream.

The algorithm iterates throughPn and searches for available physical resources.
The allocation process consists of two steps. The first step attempts to preserve
spatial locality of references to memory. Recall that each compute page appears
in exactly oneof the timeslices. Thestitch segments, inserted between the parti-
tions, however, reside in two timeslices that are not necessarily adjacent in time.
Lines 10–47 of the function PERFORMRES ALLOC strive to allocate the same
memory block for astitchsegment in both timeslices.

At the start of each iteration throughPn, the algorithm copies the contents
of CPs and CMBs from the previous timeslice to the current timeslice (lines 10–
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19). The algorithm unlocks all entries to make resources available for pages and
segments in the current timeslice. “Step 1” iterates through all compute nodes and
reclaims any resource that can be reused from a previous timeslice (lines 21–47).
The compute pages and memory segments are treated separately. To reclaim a CP
the algorithm simply locks its entry. Reclaiming CMB space is complicated by the
fact that only one segment orstitchbuffer can be active in a CMB in one timeslice.
Before locking a CMB entry, the algorithm verifies that no other buffer has already
locked a CMB (line 35). The pages and segments that were either not allocated
previously, did not survive from a previous timeslice, or could not be locked, are
placed in theNodesWOLocations list.

“Step 2” of the algorithm allocates physical compute pages and memory blocks
for all members ofNodesWOLocations (lines 49–66). Two special functions
FIND AVAIL CP and FINDAVAIL CMB, described later in this section, iden-
tify unlocked and available physical resources. These resources are added toCP []
andCMB[] data structures and the corresponding entries are locked to prevent
subsequent iterations of the algorithm from evicting them.

Steps 3 and 4 of the algorithm were omitted for brevity. They are similar to the
first two steps, but allocate CMB memory blocks for CP state and configuration
bit-streams. Similar to the first two steps of the algorithm, step 3 attempts to reuse
CMB[] array entries from a previous timeslice, and step 4 allocates new entries.

1: Function PERFORMRES ALLOC(Pn, Q)
2:

3: TSCount⇐ |Pn[]| # get number of timeslices
4: for all ts ∈ [1..TSCount] do
5: # first, the algorithm locks down the nodes that already have locations
6: # from a previous timeslice. Any node w/o a location will be added to the
7: # following list to be processed in the Step 2
8: NodesWOLocations⇐ ∅
9:

10: # prepareCP andCMB resource allocation maps for the current timeslice
11: if ts > 1 then # copy the entries from the prev TS; they could be reused
12: ∀iCP [ts][i]⇐ CP [ts− 1][i]
13: ∀jCMB[ts][j]⇐ CMB[ts− 1][j]
14: end if
15: # unlock all entries ints to allow them to be evicted
16: ∀iCP [ts][i].locked⇐ false
17: ∀j∀(a..b)∈CMB[ts][j]CMB[ts][j][a..b].locked⇐ false
18: # CMB can have 1 active segment: only one segment can be locked
19: ∀jCMBLocks[j]⇐ 0
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20:

21: # (Step 1) lock pages and segments still resident from a previous timeslice
22: for all n ∈ Pn[ts] do
23: # check if noden has an entry left over from a previous timeslice
24: found⇐ false
25: if IS PAGE(n) then # requires a CP
26: for all i ∈ CP [ts][] do
27: if CP [ts][i] = n then
28: CP [ts][i].locked⇐ true
29: found⇐ true
30: end if
31: end for
32: else # requires a CMB
33: for all i ∈ CMB[ts][] do
34: for all (a..b) ∈ CMB[ts][i][] do
35: if CMBLocks[i] = 0 ∧ CMB[ts][i][a..b] = n then
36: if CMB[ts][i][a..b].entry type = segment then
37: CMB[ts][i][a..b].locked⇐ true
38: CMBLocks[i]⇐ 1
39: end if
40: end if
41: end for
42: end for
43: end if
44: if found = false then
45: PUSH(NodeWOLocations, n)
46: end if
47: end for # lock pages and segs resident from prev timeslices
48:

49: # (Step 2) go through nodes w/o locations and find locations for them
50: for all n ∈ NodeWOLocations do
51: if IS PAGE(n) then # requires a CP
52: ind⇐ FIND AVAIL CP(CP, ts)
53: CP [ts][ind]⇐ n
54: CP [ts][ind].locked⇐ true
55: else # requires a CMB
56: # compute the size of the mem segment to be allocated:
57: # – a user-specified segment has a fixed size
58: # – astitchsegment size is its computed relative sizebi ×Q
59: size⇐ BUFFER SIZE(n, Q)
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60: [ind, (a..b)]⇐ FIND AVAIL CMB(CMB, CMBLocks, ts, size, segment)
61: CMB[ts][ind][a..b]⇐ n
62: CMB[ts][ind][a..b].entry type⇐ segment
63: CMB[ts][ind][a..b].locked⇐ true
64: CMBLocks[i]⇐ 1
65: end if
66: end for # iterate throughNodeWOLocations
67:

68: # Steps 3 and 4are essentially the same as the steps 1 and 2. They are not
69: # shown for brevity. Instead of allocating CPs or CMB space for compute
70: # pages and memory segments, Steps 3 and 4 allocate CMB space for CP
71: # state,i.e. configuration bitstream, register and FIFO content. The size of
72: # the CP state memory block is determined by architecture.
73:

74: end for # iterate through all timeslices
75:

76: return (CP [], CMB[])
Functions FINDAVAIL CP and FINDAVAIL CMB search and identify

available physical resources to allocate for compute pages, memory segments, and
memory blocks for CP state and configuration bit-stream. The function to find an
available CP strives to find an unoccupied physical compute page (lines 6, 10–12).
If all pages are occupied then an unlocked CP is returned. The algorithm runs in
timeO(P ), whereP is the number of CPs on the reconfigurable array.

1: Function FINDAVAIL CP(CMB, ts)
2:

3: CPCount⇐ |CMB[ts][]|
4: # try to find an empty (unused) CP, if none exist, return an unlocked one
5: for all i ∈ [1..CPCount] do
6: if CP [ts][i] 6= ∅ then # empty CP
7: if CP [ts][i].locked = false then
8: UnlockedCP ⇐ i
9: end if

10: else # found an empty CP, use it
11: return i
12: end if
13: end for
14: return UnlockedCP

The operation of the function to find available CMB space is more complicated.
The algorithm searches through all CMBs, limited only by theCMBLocks[i] ar-
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ray that indicates the number of segments andstitch buffers locked inCMBi.
This number cannot exceed one because the CMBs are single-ported. Therefore, if
FIND AVAIL CMB is searching for CMB space for a segment or astitchbuffer,
only CMBs withCMBLocks[i] = 0 can be considered as candidates.

For every CMB, function FINDFREE SPACE returns a memory range(a..b)
and an eviction costc. The eviction cost is a simple metric that indicates the num-
ber of bytes of data to be spilled off-chip to free up a memory block of the specified
size. If no entry is evicted function FINDFREE SPACE returnsc = 0. If one
or more entries is evicted then FINDFREE SPACE exhaustively considers all
evictions (onlyunlockedentries) that result in a contiguous memory block and re-
turns the lowest cost. If no eviction yields a memory block of the required size, the
function returns the special invalid cost. The exhaustive examination is possible in
this case because only adjacent entries are considered, and the number of analyzed
evictions is the square of the number of entries in the worst case where all entries
are unlocked.

The function also computes CMB memory utilization for each CMB. It is a
value ranging from 0 to 1 that describes the fraction of a CMB is utilized by locked
entries. The memory utilization acts as a tie breaker in case the eviction cost for
two or more CMBs is the same. The use of memory utilization in this algorithm is
the key behind the scheduler’s ability to exploit reconfiguration parallelism. By se-
lecting the least loaded CMB, the scheduler distributes the memory blocks with CP
state and configuration bitstreams evenly among CMBs. This enables the scheduler
to configure multiple CPs in parallel from multiple single-ported CMBs.

FIND AVAIL CMB is a greedy heuristic based on the bin-packing First Fit
Decreasing algorithm with the special added restriction of a single active buffer
per CMB [GJ79]. FINDAVAIL CMB makes the same number of iterations as
the number of CMBs, and each iteration invokes two additional routines. The
first one, FINDFREE SPACE, considers every sequence of adjacent entries for
eviction. Because a CMB contains at most one entry from each timeslice, it has
a running time ofO(S2), whereS is the timeslice count. The second function,
COMPUTE UTILIZATION, adds up the space consumed by the entries. It exe-
cutes in timeO(S). Therefore, the FINDAVAIL CMB runs in timeO(Y × S2).

1: Function FINDAVAIL CMB(CMB, CMBLocks, ts, size, entry type)
2:

3: cost⇐ cmbsize + 1 # invalid cost
4: cmbcount⇐ |CMB[ts][]|
5: util⇐ 2.0 # invalid utilization [0,1]
6: cmbindex⇐ −1
7:
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8: # look at all CMBs and determine whether they are locked, and what would
9: # be the cost of allocating the specified amount of memory.

10: for all i ∈ [1..cmbcount] do
11: # allocation attempt can go forward if there are no locks in this CMB,
12: # or if the memory for CP context is being allocated
13: if entry type = config ∨ CMBLocks[i] = 0 then
14: # Find a mem block of the specified size. Costc is the number of bytes
15: # to dump to primary memory to free up space for the requested block.
16: [(a..b), c]⇐ FIND FREE SPACE(CMB[ts][i], size)
17: u⇐ COMPUTE UTILIZATION (CMB[ts][i])
18: # invalid cost indicates that allocation of the requested size is not possible
19: if ISVALID COST(c) then
20: # find the entry with the min eviction cost and the min utilization
21: if (c < cost) ∨ ((c == cost) ∧ (u < util)) then
22: cost⇐ c
23: cmbindex⇐ i
24: range⇐ (a..b)
25: util⇐ u
26: end if
27: end if
28: end if
29: end for
30: return [range, cmbindex]

All algorithms presented above are guaranteed to succeed because the temporal
partitioner emits subgraphs that “fit” on the array. Note, that the algorithms are
greedy and may not optimally minimize off-chip spills or array reconfiguration
overhead.

Let us return to the PERFORMRES ALLOC to evaluate its running time.
The algorithm makesS iterations through all timeslices (line 4), andP + Y itera-
tions in each inner loop. Recall thatS is the number of timeslices,P is the number
of CPs, andY is the number of CMBs on the array. The loop that dominates the run
time is “Step 2” (lines 49 – 66), which invokes FINDAVAIL CMB, the routine
with the running time ofO(Y × S2). Thus, the running time of the entire resource
allocation algorithm isO(S × (P + Y )× Y × S2) or O(S3 × Y × (P + Y )).

5.1.3 Evaluation of Algorithms

Two factors determine the quality of the heuristic algorithms described above: (1)
how well they leverage the spatial locality in buffer accesses and (2) the amount of
reconfiguration parallelism they enable.
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Arr Size
(CP/CMB)

Wavelet Enc Wavelet Dec JPEG Enc JPEG Dec

2 0.001
3 0.478 0.018 0.006
4 0.357 0.001 0.006
5 0.387 0.009 0.006
6 0.303 0.832 0.003 0.025
7 0.016 0.780 0.003 0.026
8 0.001 0.743 0.003 0.022
9 0.001 0.636 0.003 0.022
10 0.011 0.597 0.074 0.022
11 0.012 0.397 0 0.045
12 0.001 0.001 0
13 0.001 0.194 0
14 0.002 0.036 0
15 0.002 0.035 0
16 0.009 0.035

Table 5.1: For each application, the table shows the fraction of live computation
state that is moved between CMBs or off chip. CMB size is 256Kbits

Ideally, to leverage the spatial locality, the buffer allocation algorithm must
select the same memory region for a buffer for the entire application execution. If
that is not possible, the scheduler moves the buffer from one CMB to another at run
time. Alternatively, the scheduler spills the contents of a memory block off chip
when the block is evicted and restores its contents when the block is needed again.

To consider both of these circumstances together, the reconfigurable array sim-
ulator records the size of all memory transfers during application execution. Ta-
ble 5.1 shows the ratio of the number of bytes the scheduler spills to the total size
of the computation intermediate state. In other words, the table shows the fraction
of CMB contents moved between CMBs or off chip. The results in the table are in-
tuitive. As the number of CMBs increases, the scheduler moves a smaller fraction
of computation state. Note, that only the numbers greater than 0.05 are truly sig-
nificant. The smaller fractions represent the noise due to anomalies in the heuristic
algorithm.

Evaluating the amount of reconfiguration parallelism enabled by the resource
allocation algorithm is not trivial. From the analytical model,Carray =

⌈
P
Y

⌉
Ccp is

the lower bound on the per time-slice reconfiguration overhead, assuming that all
memory blocks with CP state and configuration bit-streams are evenly distributed
amongY CMBs. This formulation, unfortunately, is a bit simplistic. There are
several circumstances that must be considered.

First, the scheduler configures some CPs only once because they contain the
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Arr Size Wavelet Encoder Wavelet Decoder
(CP/CMB) Seq Parall Improv Seq Parall Improv

3 478444 344272 1.39
4 437424 258428 1.69
5 421016 277390 1.52
6 396404 183022 2.17 472440 366988 1.29
7 330772 107948 3.06 415012 262222 1.58
8 337876 107296 3.15 349380 166916 2.09
9 297956 89620 3.32 357584 174190 2.05
10 265140 86158 3.08 345278 168168 2.05
11 252514 82050 3.08 291952 120242 2.43
12 277446 68162 4.07 295112 91520 3.22
13 269242 64060 4.20 193504 64694 2.99
14 252834 51760 4.88 180878 66916 2.70
15 207712 47338 4.39 180238 61220 2.94
17 214636 38814 5.53 178958 48594 3.68
19 205152 42602 4.82 177678 43864 4.05
21 216178 42596 5.08 168194 26508 6.35
23 219000 42276 5.18 158710 26822 5.92
25 201312 46698 4.31 149226 30924 4.83
27 187726 30610 6.13 143844 30912 4.65
29 178242 26508 6.72

JPEG Encode JPEG Decode
2 300622 104452 2.88
3 249856 96158 2.60 122464 56496 2.17
4 155654 60024 2.59 122464 41968 2.92
5 89014 34718 2.56 130668 41968 3.11
6 101000 38814 2.60 101954 29342 3.47
7 112666 51120 2.20 80804 21778 3.71
8 112026 42596 2.63 104776 34084 3.07
9 111386 51428 2.17 104136 30610 3.40
10 73828 30610 2.41 103496 39128 2.65
11 69086 17036 4.06 102856 39442 2.61
12 69400 8518 8.15

Table 5.2: “Seq” column contains total array reconfiguration overhead for a sin-
gle schedule iteration assuming that all reconfiguration actions occur in sequence,
“Parall” column — overhead assuming that non-conflicting reconfiguration actions
can occur in parallel, “Improv” column — is the ratio Seq/Parall,i.e. parallelism
factor.
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same virtual compute page throughout the entire application execution. Second,
array reconfiguration timeCarray changes in some cases. For example, the first
time a virtual node is placed on a CP, its input FIFO contents do not need to be
reloaded. The scheduler must simply initialize page FIFOs. Third, some oppor-
tunities for parallel reconfiguration are thwarted by the memory blocks that are
evicted off chip. If all memory blocks that contain CP state and bit-streams reside
in CMBs, then parallel reconfiguration is possible. If a block ever leaves the chip,
it must first be brought back into a CMB for reconfiguration. All accesses to the
off-chip memory must be serialized through a single link.

To measure the reconfiguration parallelism that the resource allocation algo-
rithm enables, the static schedule generator computed two values for each schedule.
(1) The array reconfiguration overhead over a single schedule iteration, assuming
that all configuration actions are performed sequentially. (2) The same overhead if
non-conflicting reconfiguration actions are performed in parallel as enabled on the
reconfigurable array. These results and the “parallelism” or improvement factor
are summarized in Table 5.2.

The table shows that the reconfiguration overhead decreases with array size,
suggesting that fewer operations must be performed every schedule iteration. Con-
sider, for example, a compute node that resides in the same CP throughout the
application execution. The CP must only be configured once, incurring negligible
overhead thereafter. In the table, the parallelism factor increases with the array
size, which demonstrates that the resource allocation algorithm takes advantage of
additional memory and compute pages as they become available.

5.2 Buffer Sizing

5.2.1 Buffer Sizing Algorithm

The analytical model in Equation 2.10 demonstrates that buffer size is one of the
key parameters that determines application execution time. Buffer sizes are di-
rectly proportional to the timeslice length and off chip transfer overhead. Careful
selection of buffer sizes is important for minimizing application execution time
particularly for multirate applications in SCORE.

While the program specifies fixed sizes for user segments such as coefficient
lookup tables, the scheduler can freely adjust the size ofstitch buffers that con-
tain intermediate computation state. The static schedule generator determines the
stitchsegment sizes by performing two operations: computingrelativebuffer sizes
for each inter-timeslice stream and computingabsolutebuffer sizes that minimize
application execution time.
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Computing RelativeBuffer SizesAs in the case of temporal partitioning, this
work assumes that profiled stream rates are static. The scheduler uses previous
work in synchronous data-flow (SDF [BML96]) to efficiently compute relative
buffer sizes using a balance equation such as

∀i6=j

(
pi

bi
=

pj

bj

)∧
min

i
bi = 1 (5.2)

wherepi ∈ (0, 1] is rate of streami, andbi ≥ 1 is a relative buffer size of streami.
Static schedule generator computes relative buffer sizesbi for eachstitchsegment
in the temporal partition mapPn[1..ts]. The value ofbi represents the smallest
desirable size for bufferi. The subsequent operation scalesbi by a factorQ.

The scheduler computes the relative buffer sizes based on the profiled stream
ratespi, which may not reflect the actual dynamic rates in an application for a
particular input data set. This, however, does not pose a correctness problem for
the methodology in this work. The SCORE page firing semantics, combined with
run-timebufferlockresolution, guarantee correct execution. On the other side, ap-
plication performance could be adversely affected if there is a large discrepancy
between the profiled and actual stream rates. Thestall detecthardware reduces the
performance impact of such discrepancies by automatically adjusting the time-slice
length (Section 3.4.2).

Computing AbsoluteBuffer SizesThe scheduler scales relative buffer sizes
bi proportionally by a factorQ to obtain absolute buffer sizesBi = Q × bi to be
allocated in CMBs. The buffer scaling factorQ determines the actual sizes of input
and output buffers for each temporal partition. Therefore, it controls the time-slice
size—the amount of work the application performs each scheduling step.

Several values ofQ are of particular interest to this work (Figure 5.1):
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• Qfit: the largest buffer scaling factor where the entire application state resides
on-chip. There is no off-chip traffic.
• Qmax: the largest buffer scaling factor such thateach buffer fitsin a CMB.
∀i(Qmaxbi ≤ L)

• Qopt: the optimal buffer scaling factor that minimizes total execution time.
• Qpred: the buffer scaling factor the static schedule generator predicts to be

optimal,i.e. predictedQopt.
• Qbest: the buffer scaling factor that yields the shortest application execution

time on a full, cycle-by-cycle simulator (empiricalQopt).
How does the scheduler determine the value ofQopt? Ideally, the scheduler could
predictQopt from the analytical model. However, the resource allocation algo-
rithm makes it difficult to use the model directly. The SCORE resource allocation
problem to minimize total execution time is a NP-hard optimization problem even
without the multiple constraints of single-ported CMBs, reconfiguration resource
conflicts and atomic buffer spills. No exact polynomial time solution to the re-
source allocation problem exists.

The resource allocation algorithm described in the previous section is a heuris-
tic that approximates the optimal solution. It yields results that can be evaluated in
terms of CMB packing efficiency and buffer load balance between CMBs. How-
ever, these results are not always monotonic in parameters such as buffer, array
and CMB sizes. Therefore, it is difficult to accurately estimate average buffer
sizeB, the fraction of buffers spilled off chipf(B,L), and array reconfiguration
parallelism factors(P, Y ). This leads to inaccurate estimates for off-chip swap
overheadCswap and array reconfiguration overheadCarray, making it difficult to
estimate application execution time for a given buffer scaling factorQ. The reverse
operation to computeQopt from the execution time using the analytical model is
also difficult.

Rather than using the model, the static schedule generator searches forQopt

by estimating with an abstract simulation the total application execution time for
various values ofQ. The algorithm searches for the buffer scaling factor that results
in the minimum application execution time. TheQ search space initially ranges
from 1 toQmax. The algorithm employs a hierarchical search strategy, evaluating
E values ofQ at every hierarchy level. The algorithm chooses the value ofQ that
yields the smallest expected application execution time as the center point for the
subsequent, smaller search range. The process is repeated until the search step size
reduces to one.

The hierarchical search algorithm is shown below. The pseudocode in lines 15–
25 estimates application performance. Given a value of the buffer scaling factor,
in this case the value oftmp, the resource allocation is performed with appro-
priately scaledstitch buffers. Refer to the previous section for details on PER-
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FORM RES ALLOC. MAKE RECONFSCRIPT extracts the script of recon-
figuration commands from the resource allocation maps(CP [], CMB[]). It then
arranges the reconfiguration actions to minimize resource conflicts and maximize
parallel CP reconfiguration on the array. This is accomplished with an algorithm
based on resource constrained task scheduling that prioritizes tasks on the length
of their critical paths.

To complete the process, EXECSCRIPT imitates the reconfigurable array
controller to compute the cycle cost of executing all script commands—the over-
head of array configuration. It performs an abstract, dataless simulation of the
script. Unlike the full run-time cycle level simulation, which accounts for buffers
that may be partially full, the abstract simulation makes the conservative assump-
tion that all buffers are full. The total application execution timetotalT ime is the
sum of the reconfiguration script overhead obtained from the abstract simulation
and the ideal application execution time computed based on profiled stream rates
and the graph partitioning.

1: Function QOPTHIER SEARCH(Pn[1..ts], E)
2:

3: Qmax ⇐ max(Q)s.t.∀iQbi ≤ L
4:

5: start⇐ 1
6: end⇐ Qmax

7: step⇐ max((end− start)/E, 1)
8: halfStep⇐ step/2
9: OptV al⇐∞

10: Qopt ⇐ 0
11:

12: while step > 0 do # keep iterate until the search range is tiny
13: tmp⇐ start + halfStep
14: while tmp ≤ end do
15: # at this point, the requiredstitchsegments have been inserted
16: # inPn[] and relative buffer sizesbi have been computed.
17: # Perform resource allocation with buffer scaling factor oftmp.
18: (CP [], CMB[])⇐ PERFORMRES ALLOC(Pn[], Q← tmp)
19: # Make a script of reconfig commands based on allocated resources.
20: CmdList⇐ MAKE RECONFSCRIPT(CP [], CMB[])
21: # Evaluate the reconfig overhead of the script by abstract simulation.
22: ovhd⇐ EXEC SCRIPT(CmdList)
23: # compute ideal application execution time
24: Tideal ⇐ Kmax

∑
1≤j≤S maxi∈ts(j)(pi)
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25: totalT ime⇐ Tideal + ovhd
26: if OptV al > totalT ime then
27: OptV al⇐ totalT ime
28: Qopt ⇐ tmp
29: end if
30: tmp⇐ tmp + step
31: end while
32:

33: start⇐ max(Qopt − halfStep− 1, 1)
34: end⇐ min(Qopt + halfStep + 1, Qmax)
35: step⇐ (end− start)/E
36: halfStep⇐ step/2
37: end while
38: return Qopt

The hierarchical search algorithm evaluatesE × logE(Qmax) candidate val-
ues ofQ, whereE is the number of points examined at each level of the search
hierarchy. The total running time of QOPTHIER SEARCH is thusO(E ×
logE(Qmax)×S3×Y ×(P+Y )), whereO(S3×Y ×(P+Y )) is the running time of
the PERFORMRES ALLOC routine. Functions MAKERECONFSCRIPT
and EXECSCRIPT do not dominate the execution time because they run in time
proportional to the array size,O(P + Y ).

5.2.2 Quality ofQopt Prediction

Accurately computingQopt off-line is critical to the quasi-static scheduling method-
ology. Figure 5.2 shows the wavelet encoder execution time (makespan) with sev-
eral key values ofQ. The graph demonstrates that the predictedQpred yields a
makespan that is close to the empiricalQbest—obtained through application exe-
cution simulation with schedules constructed with all possibleQ values. The data
also shows that neitherQfit norQmax consistently yield the lowest makespan.

Table 5.3 compares application execution times from predicted and empirical
optimal values ofQ for the four applications. The static schedule generator pre-
dictedQpred yields the application performance that is on average within 10–15%
of the ideal. Nevertheless, the quality ofQopt prediction could stand to be im-
proved. The maximum ratio between the makespan obtained from the predicted
Qpred and the empiricalQbest reaches as high as 1.25. This error is significant par-
ticularly on smaller reconfigurable arrays where, due to severely limited on-chip
memory capacity, the true relationship between the total application time andQ is
difficult to predict accurately.
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Arr Size Wavelet Encoder Wavelet Decoder
CP/CMB MSpred pred/best MSbest MSpred pred/best MSbest

3 2038242 1.20 1692538
4 1904188 1.18 1615710
5 1628052 1.12 1455426
6 963862 1.17 823543 1320906 1.15 1148372
7 586130 1.02 572392 1101414 1.15 960510
8 581644 1.08 538218 1270218 1.02 1240614
9 495306 1.03 481138 1885624 1.01 1858326
10 384280 1.32 291768 748382 1.06 704838
11 365600 1.25 291498 811053 1.13 717373
12 341016 1.19 287174 829864 1.24 668672
13 286085 1.00 286085 543812 1.01 540876
14 275472 1.00 275114 322602 1.05 306770
16 272508 1.00 272504 312021 1.03 301962
18 299272 1.10 272481 301976 1.03 292126
20 272504 1.00 272500 291921 1.00 291921
22 272518 1.00 272514 315686 1.03 305846
24 268449 1.00 268178 314687 1.03 305295
26 267834 1.00 267834 617463 1.46 422391
28 265674 1.00 265662
30 263308 1.00 263308

JPEG Encoder JPEG Decoder
2 3331761 1.03 3243353
3 3220591 1.02 3158453 2107097 1.00 2106881
4 2173524 1.01 2155437 1823395 1.00 1823267
5 1559881 1.00 1559875 1536189 1.00 1535269
6 1150135 1.00 1148911 1459220 1.19 1228986
7 1174802 1.01 1160557 1206113 1.08 1117881
8 1157157 1.00 1157151 859299 1.04 829934
9 1157080 1.01 1146979 857409 1.03 829207
10 849899 1.01 840686 857512 1.03 829373
11 786492 1.00 786492 829153 1.00 829135

Table 5.3: Comparison between makespan (total application execution time) ob-
tained from the predictedQpred versus the makespan from the empirically obtained
Qbest.
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Figure 5.2: Makespan that results from selecting different values forQ.

5.3 Evaluation

Section 2.3.1 develops the analytical model that relates execution timeTrun, ar-
chitecture parameters, and buffer scaling factorQ. Section 5.3.1 provides simula-
tion results to validate the model. The results demonstrate that the model and the
quasi-static scheduler system can adapt to variations in parameters such as off-chip
memory bandwidth and CMB size. It is crucial that a robust scheduling system
adapts to these parameters to be able to scale with device generations.

The analytical model demonstrates that a multi-rate application implemented
with uniform size buffers under-utilizes on-chip memory. Section 5.3.2 quantifies
the performance penalty from this memory under-utilization.

5.3.1 Model Operation

Consider variations in off-chip memory bandwidth. Figure 5.3 shows the simulated
application execution time breakdown into the off-chip memory transfer overhead,
array reconfiguration overhead, and the ideal execution time for various values of
Q. The application is a wavelet encoder running on a 6 CP/CMB array. The two
graphs represent the simulation results with off-chip memory bandwidthsWio of 8
and 4 bits per cycle, respectively. Both share common points forQ ≤ 35 because
the buffers are small enough that the live application state fits in CMBs. This
virtually eliminates off-chip traffic. AsQ increases further, the run times diverge
due to the relative impact of off-chip memory bandwidth.
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Wavelet Makespan Breakdown (6 CP, Wio=8)
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Wavelet Makespan Breakdown (6 CP, Wio=4)
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(a) Array overhead dominates:Qopt = 95. (b) Memory transfers dominate:Qopt = 35.

Figure 5.3: Wavelet encoder simulated execution time breakdown into off-chip
memory transfer overhead (∝ 1/Wio), array management overhead, and ideal exe-
cution time.

The execution time in Figure 5.3a, corresponding to off-chip bandwidth of 8
bits per second, continues to decrease pastQ = 35 because the array reconfigura-
tion overhead dominates the execution time. The timeslice lengths increase with
Q and help amortize the overhead. The optimal value of the buffer scaling fac-
tor is 95. Interestingly,Qopt = 95 is larger thanQfit = 35. Qfit is the largest
Q where the entire application state resides on-chip and for which off-chip traffic
is negligible. Notice that extra overhead from spills does not adversely affect the
application performance when off-chip bandwidth is abundant with respect to the
size of the live state. Although running an application withQ = Qfit minimizes
off-chip traffic, it does not always result in the shortest application run time. This is
particularly true on smaller arrays with limited memory capacity as in this example
with a 6 CP/CMB array.

Figure 5.3b shows the opposite trend for a system with limited off-chip band-
width of 4 bits per cycle. The execution time increases asQ grows pastQfit = 35.
Off-chip memory transfers dominate the run-time overhead. Smaller values ofQ
minimize execution time by permitting live computation state to reside on chip.
As both graphs show, in high virtualization on small arrays, the reconfiguration
overheads dominate the execution time if not carefully managed.

Table 5.4 provides wavelet encoder execution times for several zones of oper-
ation. Refer to Appendix B.3 for complete results for all applications. The table
is divided into six zones: high and low off-chip bandwidths for each of the three
CMB memory sizes. For each zone, the table contains:
• MSfix: the total execution time with the uniform buffer size schedule
• MSvar: the total execution time with the variable buffer size schedule
• fix/var : the ratioMSfix/MSvar
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CMB Size (L): 128 Kbits
3 5216132 1.55 3361264 56 139118 12148828 1.58 7667522 56 139101
4 4714690 1.51 3118522 56 152212 11264519 1.58 7139960 56 152202
5 4450734 1.70 2613368 64 165952 10957180 1.69 6468970 64 165937
6 2844115 1.51 1886421 79 241299 7449484 1.52 4891488 77 235570
7 2045417 1.59 1287266 95 250144 5653968 1.86 3039555 96 239953
8 2110170 1.89 1113940 97 191532 5432235 2.22 2451374 95 180803
9 1822222 2.01 906200 150 199424 4411124 2.21 1993188 153 179936
10 764194 1.39 548422 1989 223317 1721746 2.46 698994 505 0
11 806596 1.74 463235 1989 129525 1801941 3.63 496646 995 0
13 513147 1.50 341763 170 0 568007 1.66 341763 170 0
15 276170 1.01 272498 331 0 278754 1.02 272498 331 0
19 272229 1.00 272494 8119 0 272229 1.00 272496 8119 0

CMB Size (L): 256 Kbits
3 2267062 1.34 1692538 113 107986 4795857 1.43 3357634 113 107822
4 2153736 1.33 1615710 113 107224 4492198 1.47 3053244 113 107047
5 2009326 1.38 1455426 130 114178 4437910 1.62 2733989 130 113969
6 1238105 1.50 823543 194 133935 2637761 1.87 1410530 46 0
7 1017004 1.78 572392 129 0 2151584 3.76 572392 129 0
8 981699 1.82 538218 194 31974 1680184 3.07 548036 150 0
9 773102 1.61 481138 240 0 884999 1.84 481140 237 0
10 387984 1.33 291768 4051 0 412150 1.41 291770 4051 0
11 389162 1.34 291498 4051 0 400499 1.37 291498 4051 0
13 358524 1.25 286085 335 0 361836 1.26 286081 335 0
15 273379 1.00 272498 331 0 273379 1.00 272498 331 0
19 272229 1.00 272494 8101 0 272229 1.00 272496 14105 0

CMB Size (L): 512 Kbits
3 1211836 1.20 1012716 182 43213 1530190 1.49 1025704 116 0
4 1084009 1.30 832682 178 20305 1412382 1.55 910469 120 0
5 1030598 1.33 776253 198 14565 1316788 1.53 858749 198 14565
6 646156 1.60 403171 389 42278 746448 1.80 415114 389 43814
7 515809 1.45 356634 391 16704 609932 1.70 359656 391 16704
8 566776 1.68 338086 389 16128 636002 1.85 343034 389 14848
9 508438 1.61 316004 613 18752 530000 1.65 322134 613 17216
10 291648 1.00 292084 4071 0 291648 1.00 291658 4951 0
11 291408 1.00 290994 4071 0 291406 1.00 291264 5556 0
13 286996 1.00 285600 457 0 286996 1.00 285632 457 0
15 273379 1.00 272518 330 0 273379 1.00 272498 330 0
19 272234 1.00 272496 21321 0 272237 1.00 272496 21321 0

Table 5.4: Wavelet Encoder (30 pages): Six operating zones for a SCORE system
and application performance comparison with uniform fixed buffer size allocation.
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Figure 5.4: Comparison of application run time with variable vs uniform size
buffers (CMB size is 256Kbits).

• Qopt: the buffer scaling parameter that yields the execution timeMSvar

• Bspill: the number of bytes spilled off chip during application execution.
The subsequent section analyzes the results forMSfix andfix/var. This section
describes the way the system adapts to changes in the underlying architecture pa-
rameters.

Consider the application execution time on an array with small 128Kbit CMBs
and compare the corresponding values ofQopt for every array size. For example,
for a 10 CP array,Qopt is 1989 and 505 for off-chip bandwidths of 8 and 4 bits per
cycle respectively. On the array with higher off-chip bandwidth, the scheduler uses
larger buffers (Qopt) and spills more of the intermediate computation state (Bspill).
In contrast, for the array with low off-chip bandwidth, the scheduler strives to keep
more of the intermediate computation state on chip to avoid costly spills.

Compare the results from 128Kbit CMB arrays with the results from larger
CMB sizes of 256Kbits and 512Kbits. They reveal that the scheduler spills less
of the intermediate computation state off chip (Bspill) and uses larger buffers to
fill available CMB memory space (Qopt). The general trend that applies to arrays
with all CMB sizes is that the scheduler uses larger buffers and spills more of the
intermediate computation state on arrays with the higher off-chip bandwidth.
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Stitchbuffer utilization: CMB Size 256KBits and Offchip BW = 8 bits/cycle
Wavelet Encoder Wavelet Decoder JPEG Encoder JPEG Decoder

CP Fixed Variable Fixed Variable Fixed Variable Fixed Variable
2 0.48 0.97
3 0.25 0.91 0.53 0.97 0.33 1.00
4 0.23 0.92 0.21 0.95 0.30 1.00
5 0.27 0.95 0.54 0.97 0.30 1.00
6 0.34 0.96 0.33 0.98 0.56 0.98 1.00 1.00
7 0.31 0.95 0.29 0.72 0.48 0.97 1.00 1.00
8 0.30 0.95 0.13 0.92 0.48 0.98 1.00 1.00
9 0.29 0.93 0.13 0.78 0.48 0.97 1.00 1.00
10 0.72 0.95 0.18 0.80 1.00 1.00 1.00 1.00
11 0.65 0.94 0.13 1.00 1.00 1.00
12 0.43 0.91 0.13 0.76
13 0.28 0.98 0.20 0.92

Table 5.5: Comparison of buffer utilization for fixed and variable size buffer
schemes. CMB Size is 256KBits and the off-chip bandwidth is 8 bits/cycle

5.3.2 Comparison of Variable vs Uniform Size Buffers

Section 2.3.1 demonstrates that a multi-rate application implemented with uniform
size buffers underutilizes on-chip memory. The highest rate buffer causes appli-
cation execution to stall early, even if other buffers have available space to con-
tinue token processing. Figure 5.4 quantifies the loss in application performance
that results from allocating uniform size buffers for a wavelet encoder. The graph
shows application execution time from two simulations, using optimal uniform size
buffers (MSfix) and using variable size buffers (MSvar) with the buffer scaling
factorQbest .

This work made a special effort to be fair when comparingMSfix versus
MSvar. Rather than choosing a single uniform buffer size for all architecture pa-
rameters, the optimal buffer size that yields the lowest execution time was empiri-
cally determined for each point in the architecture parameter space.MSfix is thus
the application execution time with the optimal uniform buffer size for the specific
array size, CMB memory size, and off-chip bandwidth.

Figure 5.4 demonstrates that allocating uniform size buffers for the wavelet
encoder results in increases in execution time ranging from 1.25 to 1.82x compared
to Qbest. The problem is particularly severe on smaller array sizes with limited on-
chip memory, where application makespan almost doubles with the use of uniform
sized buffers.

Table 5.5 confirms the hypothesis that multi-rate applications severely under-
utilize memory when implemented with uniform buffer sizes. The table compares
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allocated buffer space utilization with uniform size buffers versus variable size
buffers. With uniform size buffers, wavelet encoder application utilizes on average
only 30–40% of the allocated buffer space. In contrast, variable buffer sizes enable
a use of 91–98% of the allocated capacity. The variable buffer size utilization is
not 100%. This is due to deviations of the profiled rates from the actual stream
rates for an input data-set in a simulation.

Table 5.4 shows the improvements in application performance when variable
size rather than uniform fixed size buffers are employed (columnfix/var). The
reductions in execution time from fixed to variable size buffers are not monotonic
with the array size due to the instabilities in resource allocation algorithms. These
same instabilities impede direct computation ofQopt from the analytical model as
discussed in Section 5.2.1.

However, the general trend in application performance improvement is intu-
itive. As the array size increases and resources become abundant, the ratio be-
tween the execution time with fixed and variable buffer sizes decreases. Multi-rate
applications scheduled with uniform fixed buffer sizes under-utilize memory. Ac-
cordingly, the simulations demonstrate the highest performance improvements on
reconfigurable arrays with severely constrained resources—CMB size of 128Kbits
and the off-chip memory bandwidth of 4 bits per cycle. On the resource constrained
device, the variable size buffer scheme permits the scheduler to pack the buffers the
most tightly together and efficiently utilize the limited hardware. Consequently, as
the array size scales to larger CMB sizes and higher bandwidths, the improvements
in application performance decrease.
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Chapter 6

Conclusion

A run-time scheduler plays a key role in supporting the abstractions of SCORE,
that gives a programmer expressive power and flexibility for dynamic data depen-
dent computations. A poorly implemented scheduler may drastically diminish the
potential performance gains offered by FPGAs and severely limit the model’s ap-
plicability.

This work presents a taxonomy of scheduling solutions to demonstrate that, in
addition to the natural solution of a fully dynamic scheduler, there exists a rich
space of solutions of varying complexity, quality, and restrictions on application
features. While all solutions preserve the semantic and expressive power of the
SCORE compute model, only a subset yields efficient practical implementations.

For efficient page scheduling, any time-multiplexed implementation must con-
tain scheduling and array reconfiguration overheads. To address the scheduling
overhead, this work investigates static and dynamic scheduling approaches and
demonstrates the quasi-static approach to have superior scheduling quality and
substantially lower run-time overhead than the dynamic approach. The quasi-static
implementation reduces run-time scheduling overhead by a factor ranging from 5.5
to 9.4 across the applications. This reduced overhead of 10–20 thousand clock cy-
cles per timeslice makes the model efficient on applications with short execution
time or rapidly changing run-time behavior. With the reduced runtime schedu-
ling overhead and superior scheduling quality, the quasi-static implementation de-
creases execution times by a factor ranging from 2.7 to 5.4 for a set of applications
containing both static and data-dependent components.

This work focuses on two key scheduler components: temporal graph parti-
tioning and physical resource allocation.

The analytical model that captures the relationship between the execution time
and array utilization yields several algorithms for temporal partitioning. These
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heuristic algorithms, driven by the array utilization metric, deliver results that are
on average within 10% of the ideal.

The quasi-static scheduling methodology implements a flexible resource allo-
cation strategy which accommodates the multi-rate and dynamic rate computations
typical to many media processing applications. These applications present a chal-
lenge to the scheduler to efficiently utilize off-chip bandwidth and on-chip memory.
This work demonstrates that to minimize execution time, the scheduler must match
buffer sizes with compute graph flow rates, and scale buffers to efficiently balance
off-chip spills and array reconfiguration overhead. The quasi-static scheduler im-
plements these principles without restricting the dynamic data dependent execution
semantics of the SCORE graphs. It offers a balanced combination of static sche-
duling techniques with inexpensive hardware mechanism for stall detection.

With variable size buffers and a robust resource allocation scheme, the reduc-
tion in the execution time relative to uniform size buffer scheme typically exceeds
50%. The improvements are particularly significant on smaller devices with con-
strained memory and bandwidth. These results persist over a range of applications
and architecture parameters.

The quasi-static scheduling methodology was evaluated with several image
processing applications that are the most natural match to the streaming dataflow
programming model of SCORE. These applications include a range of components
with different behaviors from dynamic dataflow operators such as Huffman coders
to static rate operators such as discrete cosine transforms. The performance results
obtained with these applications demonstrate the viability and effectiveness of the
low overhead, quasi-static scheduling for the applications in this domain.

These image processing applications share several common characteristics that
favor the quasi-static scheduling. Although token emission and consumption rates
of their many components are dynamic and dependent on the input data, the flow
rates do not vary erratically, but average around a particular value. The hard-
ware stall detect mechanism effectively adapts application execution to short term
changes in rates of individual operators. It remains an open issue to determine
and quantify the effects of using average profiled rates to build static schedules for
applications, particularly for those where the profiled rates differ significantly from
the actual dynamic rates.

The applications evaluated in this work do not contain large communication
dependency cycles in their compute graphs. A large cycle that must be temporally
partitioned between timeslices precludes efficient application execution on any vir-
tuallized system, and thus this work did not optimize the scheduler operation for
such applications. An analogous case in conventional operating systems occurs
whenever an application’s “working set” of virtual memory pages is smaller than
available physical memory. Applications with large cyclical dependencies cannot
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be efficiently executed on a SCORE platform with insufficient hardware resources
to accommodate a large cycle in the critical path.

This work presents an empirically validated analytical model that describes
the relationship between application execution time and buffer sizes. This project
demonstrates that the quasi-static scheduler system is robust to the variations in
the key architecture parameters such as on-chip memory size and off-chip memory
bandwidth. This permits the scheduler to automatically scale application perfor-
mance across device generations—enabling application longevity and expanding
SCORE’s applicability.
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Appendix A

SCORE Applications

This work evaluates performance of four applications with the quasi-static, fully
dynamic, and fully static schedulers. This section provides a short description of
these four applications, their compute graph topology and general functionality of
individual pages and segments. This is not intended to be a complete documenta-
tion for these applications, but rather an attempt to give the reader a glance at the
application structure and operation. For the complete documentation, the reader is
referred to the applications’ author Joseph Yeh.

A.1 JPEG Encoder

Figure A.1 contains the compute graph for a standard compliant JPEG encoder
application. The application converts a raw512 × 512 pixel monochrome image
into a JPEG bitstream.

The JPEG images consist of8 × 8 pixel blocks, which are encoded indepen-
dently. The processor sends 8 image pixels at a time in a row major order. The com-
putation begins with a one dimensional discrete cosine transform in(0) fllm ,
followed by a transpose operator(1) tpose , and another one dimensional DCT
in (2) fllm . Together these three pages implement a two-dimensional discrete
cosine block transform, which converts 64 pixels from spatial domain to frequency
domain. The frequency coefficients are arranged in such a way that the lowest
frequency coefficient is in the upper-left corner of the block, and the highest fre-
quency coefficient is in the bottom-right corner. The zigzag scan(3) zigzag
turns the two-dimensional data into a one-dimensional stream to be compressed.

Compression begins with quantization, performed by(4) jquant operator
with the help of the quantization table in segment(11) . Then the application per-
forms zero-length encoding of the quantized data in(5) JZLE , which emits data
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for Huffman encoding. There are two sets of Huffman tables in this application.
Segments(13) and(12) contain codewords and codeword lengths for encoding
the DC value in the block (the value in the upper-left corner). Segments(14) and
(15) contain codewords and codeword lengths for encoding the higher frequency
data. Operator(8) MixToHuff routes the data from the JZLE and the Huffman
tables to the(9) HuffMachine to complete the encoding process.

The last operator(10) CheckZero guarantees that the emitted JPEG bit-
stream is valid. The value 00 is a special start code in the JPEG standard, and
CheckZero appends FF after each 00 to disable its special meaning.

A.2 JPEG Decoder

Figure A.2 contains the compute graph for the JPEG decoder application, which
performs the inverse operation as compared to the encoder. The application con-
sumes a JPEG-compliant bitstream to emit a512× 512 raw monochrome image.

Pages(9) DecHuff , (10) DecSym , and (11) ftabmod decompress
the incoming streams using a Huffman table in segment(15) and zero-length de-
coding. The application inverse quantizes the decompressed data stream in(8)
jdquant using the quantization parameters in segment(14) . The application
uses two read/write segments(12) and (13) in alternation to reconstruct the
blocks of frequency coefficients that will be converted into spacial domain. While
the inverse quantizer is writing to segment(12) , operator(4) distrib is read-
ing from segment(13) , and vice versa. The operators(6) zigzag and(5)
read seg generate required segment access addresses and control tokens (read
or write) to manage concurrent read and write operations.

Page(4) distrib forwards the data from segments(12) and(13) to the
two-dimensional inverse DCT. 2D IDCT consists of(0) illm , (1) tpose ,
and (2) illm , which perform an one-dimensional IDCT, followed by a trans-
pose, and another one-dimensional IDCT to compute the spatial domain block.
The last operatorbl verifies that all emitted data is bound to the valid range be-
tween 0 and 255.

A.3 Wavelet-based Encoder

Figure A.3 contains the compute page diagram for the wavelet-based encoder ap-
plication that compresses512 × 512 pixel monochrome image. The application
consists of 30 virtual compute pages and 6 user-defined segments.

The application driver code, which executes on the processor, feeds the image
into the compute graph one pixel at a time in a row major order. The process-
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ing begins with(0) LiftWaveHD , which subsamples the incoming horizon-
tal data stream by 2 after passing it through a low-pass filter. Notice, that high-
frequency data is discarded in this first pass. After the transformation on image
rows, the application performs the same transformation on image columns using
(1) InWave and (2) Wave . Logically, theInWave transposes the data. In
practice, the transpose is a costly operation, andInWave uses three streams be-
tween(1) and(2) as delay buffers to rearrange the incoming data forWave to
apply a FIR filter to image columns. Notice, that the first column pass discarded
high-frequency data as well. Together,LiftWaveHD andLiftWaveVD reduce
the original data stream size by a factor of 4.

The application performs two more wavelet passes consisting ofLiftWaveH
and LiftWaveV to obtain a DC and six frequency bands (AC0–AC5). These
two operations do not discard high frequency data. Before emitting DC, the ap-
plication quantizes DC data in(17) Quant DC. To compress the data in six
frequency bands, the application starts with quantization and zero-length encoding
(Quant ZLE). The encoded data is used as an address into a Huffman table (seg-
mentHuff ), which emits the codewords into aHuffMachine page, responsible
for assembling and communicating the data back to the processor. A compute page
Quant ZLE and a Huffman table are unique for each frequency band.

A.4 Wavelet-based Decoder

Figure A.4 contains the compute graph page for the wavelet-based decoder. This
application performs the inverse operation than that of wavelet-based encoder.
Given a DC-band data stream and six AC-band data streams, the application emits
a raw512× 512 monochrome image.

The incoming frequency band data is first decompressed using Huffman tables
in segments 27–32 and then using zero-length decoding. After the data is de-
quantized, the application assembles it back into a single stream by up-sampling
and adding appropriate streams together to form the original image. Notice, that
DecWaveVpages, which reverse the wavelet transformation in the vertical (col-
umn) direction, use self-looping streams as delay lines to rearrange the incoming
data in row major order for processing in the column major order.
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Appendix B

Measured Results

B.1 Dynamic vs Quasi-Static Schedulers

Wavelet Encoder (30 pages) : Summary of Total Execution Time (MCycles)
Dynamic Quasi-Static Speedup vs Dyn.
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6 5.968 7.324 18.5% 4.144 0.795 0.859 7.5% 1.77 8.52
7 5.447 6.749 19.3% 3.502 0.684 0.756 9.5% 1.93 8.92
8 4.166 5.400 22.9% 2.887 0.619 0.683 9.3% 1.87 7.91
9 4.162 5.497 24.3% 2.398 0.613 0.662 7.5% 2.29 8.30
10 3.156 4.324 27.0% 2.308 0.565 0.630 10.3% 1.87 6.86
11 2.141 3.025 29.2% 2.244 0.537 0.591 9.0% 1.35 5.12
12 2.142 3.014 28.9% 1.662 0.508 0.560 9.3% 1.81 5.38
13 2.137 3.144 32.0% 1.683 0.507 0.568 10.8% 1.87 5.53
14 1.872 2.754 32.0% 1.595 0.465 0.513 9.3% 1.73 5.37
15 1.628 2.412 32.5% 1.071 0.458 0.492 6.9% 2.25 4.91
16 1.367 2.130 35.8% 1.663 0.489 0.541 9.5% 1.28 3.94
17 1.089 1.839 40.8% 1.090 0.466 0.514 9.2% 1.69 3.58
18 1.086 1.757 38.2% 1.067 0.459 0.503 8.6% 1.65 3.50
19 1.095 1.871 41.5% 1.021 0.439 0.474 7.3% 1.83 3.95
20 0.827 1.387 40.4% 1.025 0.441 0.487 9.3% 1.35 2.85
21 0.807 1.380 41.5% 1.010 0.437 0.479 8.7% 1.37 2.88
22 0.788 1.374 42.6% 0.974 0.419 0.452 7.2% 1.41 3.04
23 0.777 1.407 44.7% 0.949 0.414 0.445 7.1% 1.48 3.16
24 0.776 1.378 43.7% 0.942 0.407 0.461 11.8% 1.46 2.99
25 0.777 1.434 45.8% 0.969 0.411 0.450 8.7% 1.48 3.19
26 0.774 1.410 45.1% 0.956 0.413 0.453 8.9% 1.47 3.12
27 0.775 1.420 45.4% 0.958 0.413 0.452 8.7% 1.48 3.14
28 0.771 1.409 45.3% 0.949 0.416 0.471 11.6% 1.48 2.99
29 0.528 1.006 47.5% 0.947 0.407 0.456 10.8% 1.06 2.21
30 0.275 0.461 40.2% 0.442 0.412 0.433 4.9% 1.04 1.06

Geometric Mean 35.0% 8.7% 1.6 4.099



Wavelet Decoder (27 pages) : Summary of Total Execution Time (MCycles)
Dynamic Quasi-Static Speedup vs Dyn.
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6 9.659 11.631 17.0% 3.275 0.812 0.846 4.0% 3.55 13.75
7 8.447 10.319 18.1% 2.618 0.735 0.765 4.0% 3.94 13.49
8 7.403 9.137 19.0% 2.613 0.721 0.753 4.3% 3.50 12.13
9 5.814 7.356 21.0% 2.021 0.697 0.727 4.1% 3.64 10.11
10 5.033 6.489 22.4% 1.999 0.663 0.691 4.1% 3.25 9.39
11 5.423 7.165 24.3% 1.933 0.614 0.642 4.3% 3.71 11.16
12 6.227 8.187 23.9% 1.887 0.608 0.637 4.5% 4.34 12.86
13 5.817 7.844 25.8% 1.813 0.594 0.621 4.3% 4.33 12.63
14 5.125 6.887 25.6% 1.185 0.530 0.553 4.1% 5.81 12.46
15 4.231 5.816 27.2% 1.123 0.511 0.533 4.1% 5.18 10.91
16 2.978 4.156 28.3% 1.178 0.533 0.557 4.3% 3.53 7.47
17 3.325 4.621 28.0% 1.136 0.525 0.549 4.3% 4.07 8.42
18 1.991 2.803 29.0% 1.095 0.511 0.534 4.3% 2.56 5.25
19 2.560 3.600 28.9% 1.035 0.496 0.519 4.4% 3.48 6.93
20 2.543 3.683 30.9% 1.034 0.497 0.519 4.4% 3.56 7.09
21 2.536 3.689 31.3% 1.030 0.497 0.519 4.3% 3.58 7.11
22 2.425 3.573 32.1% 1.032 0.499 0.521 4.2% 3.46 6.86
23 0.893 1.418 37.0% 1.029 0.498 0.519 4.2% 1.38 2.73
24 1.126 1.717 34.4% 1.030 0.499 0.520 4.1% 1.67 3.30
25 0.621 1.068 41.8% 1.037 0.509 0.531 4.2% 1.03 2.01
26 0.739 1.167 36.7% 1.044 0.517 0.539 4.0% 1.12 2.17
27 0.368 0.526 30.0% 0.501 0.475 0.493 3.7% 1.05 1.07
28 0.369 0.536 31.2% 0.505 0.479 0.498 3.7% 1.06 1.08
29 0.368 0.566 34.9% 0.505 0.479 0.497 3.7% 1.12 1.14
30 0.377 0.533 29.2% 0.503 0.477 0.495 3.7% 1.06 1.08

Geometric Mean 27.7% 4.1% 2.60 5.43
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JPEG Encoder (13 pages) : Summary of Total Execution Time (MCycles)
Dynamic Quasi-Static Speedup vs Dyn.
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4 4.832 6.368 24.1% 6.756 2.171 2.341 7.3% 0.94 2.72
5 7.134 9.086 21.5% 3.460 1.400 1.479 5.3% 2.63 6.15
6 6.458 8.539 24.4% 4.682 1.427 1.516 5.9% 1.82 5.63
7 3.875 5.038 23.1% 3.212 1.322 1.397 5.4% 1.57 3.61
8 1.655 2.349 29.6% 3.173 1.278 1.360 6.0% 0.74 1.73
9 1.672 2.406 30.5% 3.216 1.012 1.052 3.8% 0.75 2.29
10 1.635 2.308 29.2% 2.179 0.955 0.980 2.6% 1.06 2.36
11 1.635 2.420 32.4% 2.132 0.943 0.977 3.5% 1.13 2.48
12 2.621 3.678 28.7% 2.194 0.958 0.991 3.3% 1.68 3.71
13 0.797 0.939 15.1% 0.899 0.865 0.879 1.6% 1.04 1.07

Geometric Mean 25.3% 4.1% 1.23 2.81
JPEG Decoder (12 pages) : Summary of Total Execution Time (MCycles)

Dynamic Quasi-Static Speedup vs Dyn.
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3 10.672 13.312 19.8% 6.972 2.836 3.004 5.6% 1.91 4.43
4 5.925 8.010 26.0% 4.851 1.580 1.701 7.1% 1.65 4.71
5 5.951 7.580 21.5% 4.949 1.666 1.796 7.2% 1.53 4.22
6 3.904 5.077 23.1% 3.116 1.290 1.379 6.5% 1.63 3.68
7 1.860 2.589 28.2% 1.919 1.153 1.192 3.3% 1.35 2.17
8 1.651 2.196 24.8% 2.114 0.946 0.979 3.4% 1.04 2.24
9 1.667 2.260 26.2% 2.084 0.942 0.975 3.4% 1.08 2.32
10 1.624 2.225 27.0% 2.050 0.940 0.974 3.5% 1.09 2.29
11 1.623 2.518 35.5% 2.076 0.933 0.965 3.4% 1.21 2.61
12 0.796 0.910 12.6% 0.889 0.856 0.869 1.5% 1.02 1.05

Geometric Mean 23.7% 4.1% 1.32 2.73
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Average Timeslice Overhead (KCycles)
Wavelet Encoder Wavelet Decoder JPEG Encoder JPEG Decoder
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3 45.5 7.5 6.1
4 57.9 7.5 7.7 50.3 6.6 7.6
5 56.7 13.4 4.2 54.6 7.3 7.5
6 52.6 15.3 3.4 57.2 7.5 7.6 54.6 6.2 8.8 56.6 7.2 7.9
7 62.2 13.7 4.5 68.0 8.0 8.5 61.3 7.0 8.7 71.9 5.8 12.4
8 69.1 15.4 4.5 64.0 8.4 7.6 105.8 6.5 16.3 107.8 15.2 7.1
9 76.3 17.7 4.3 65.7 10.3 6.4 108.0 13.2 8.2 110.6 15.8 7.0
10 92.6 17.7 5.2 66.9 9.8 6.8 103.7 11.8 8.8 119.5 10.9 11.0
11 101.5 14.0 7.2 59.8 9.6 6.2 106.3 17.2 6.2 109.4 14.1 7.8
12 97.5 22.0 4.4 62.5 9.6 6.5 97.5 17.3 5.6 87.4 9.1 9.6
13 95.4 24.0 4.0 81.8 9.0 9.0 93.2 9.8 9.5
14 110.2 28.4 3.9 63.5 10.4 6.1
15 109.8 22.6 4.9 86.6 9.5 9.1
16 110.7 25.1 4.4 84.3 9.8 8.6
17 124.0 22.3 5.6 74.3 9.9 7.5
18 150.0 24.1 6.2 91.5 8.8 10.4
19 144.2 27.9 5.2 79.5 7.9 10.1
20 150.4 23.0 6.6 87.9 7.6 11.6
21 142.9 21.9 6.5 93.4 7.6 12.3
22 147.9 30.7 4.8 94.0 7.5 12.5
23 144.3 16.7 8.7 89.7 7.2 12.5
24 139.5 16.5 8.5 86.7 6.8 12.8
25 129.1 21.7 6.0 107.2 7.3 14.6
26 142.9 19.8 7.2 103.0 6.9 15.0
27 141.1 12.9 11.0 194.2 11.2 17.3
28 129.2 23.2 5.6 186.0 11.6 16.1
29 132.3 24.7 5.4 166.4 21.9 7.6
30 93.4 18.3 5.1 112.0 20.8 5.4

Geometric Mean 5.5 9.4 7.9 8.2
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B.2 Temporal Partitioning Heuristics

Wavelet Encoder (30 Pages) : Summary of Temporal Partitioning Algorithms
Execution Time Improvement Measured Array Activity
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6 375808 424704 409856 1.13 1.09 0.35 0.31 0.32
7 329984 352768 357120 1.07 1.08 0.34 0.32 0.31
8 311808 330496 319488 1.06 1.02 0.32 0.30 0.31
9 306944 328192 311040 1.07 1.01 0.28 0.27 0.28
10 288000 306944 300544 1.07 1.04 0.27 0.26 0.26
11 287488 292096 297472 1.02 1.03 0.25 0.24 0.24
12 285184 289280 297472 1.01 1.04 0.23 0.23 0.22
13 283648 285440 285184 1.01 1.01 0.21 0.21 0.21
14 273746 278016 285184 1.02 1.04 0.20 0.20 0.20
15 272640 272640 285184 1.00 1.05 0.19 0.19 0.18
16 269881 272640 285184 1.01 1.06 0.18 0.18 0.17
17 268800 272640 285184 1.01 1.06 0.17 0.17 0.16
18 268800 272640 280832 1.01 1.04 0.16 0.16 0.16
19 268800 272640 280832 1.01 1.04 0.15 0.15 0.15
20 268800 272640 280832 1.01 1.04 0.15 0.14 0.14
21 268800 272640 268800 1.01 1.00 0.14 0.14 0.14
22 268800 272640 268800 1.01 1.00 0.13 0.13 0.13
23 268800 268800 268800 1.00 1.00 0.13 0.13 0.13
24 268544 268800 268800 1.00 1.00 0.12 0.12 0.12
25 268032 268800 268032 1.00 1.00 0.12 0.12 0.12
26 266240 268544 266240 1.01 1.00 0.11 0.11 0.11
27 265728 268032 266240 1.01 1.00 0.11 0.11 0.11
28 265254 266240 266240 1.00 1.00 0.11 0.11 0.11
29 265216 266240 266240 1.00 1.00 0.10 0.10 0.10
30 263424 263424 263424 1.00 1.00 0.10 0.10 0.10
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Wavelet Decoder (27 Pages) : Summary of Temporal Partitioning Algorithms
Execution Time Improvement Measured Array Activity

A
rr

ay
S

iz
e

E
xh

au
st

iv
e

To
po

lo
gi

ca
l

M
in

cu
t

To
po

/E
xh

M
in

/E
xh

E
xh

au
st

iv
e

To
po

lo
gi

ca
l

M
in

cu
t

6 315217 373094 333201 1.18 1.06 0.38 0.32 0.36
7 309841 370021 349857 1.19 1.13 0.33 0.28 0.30
8 295221 391354 323966 1.33 1.10 0.31 0.23 0.28
9 289544 461761 340380 1.59 1.18 0.28 0.17 0.24
10 287008 323136 306231 1.13 1.07 0.25 0.22 0.24
11 285990 307019 306260 1.07 1.07 0.23 0.21 0.22
12 286004 332647 306256 1.16 1.07 0.21 0.18 0.20
13 286004 332659 306273 1.16 1.07 0.20 0.17 0.18
14 272162 435358 306277 1.60 1.13 0.19 0.12 0.17
15 272162 298822 306281 1.10 1.13 0.18 0.16 0.16
16 269600 298824 306293 1.11 1.14 0.17 0.15 0.15
17 269600 313933 339062 1.16 1.26 0.16 0.14 0.13
18 269592 313954 339066 1.16 1.26 0.15 0.13 0.12
19 269600 346727 272159 1.29 1.01 0.14 0.11 0.14
20 269600 282684 272160 1.05 1.01 0.14 0.13 0.13
21 272164 282689 272159 1.04 1.00 0.13 0.12 0.13
22 272163 296774 272158 1.09 1.00 0.12 0.11 0.12
23 272162 296782 272159 1.09 1.00 0.12 0.11 0.12
24 272162 296791 272158 1.09 1.00 0.11 0.10 0.11
25 276254 329561 276254 1.19 1.00 0.11 0.09 0.11
26 276255 397150 276258 1.44 1.00 0.10 0.07 0.10
27 262679 262680 262912 1.00 1.00 0.10 0.10 0.10

JPEG Encoder (13 Pages) : Summary of Temporal Partitioning Algorithms
Execution Time Improvement Measured Array Activity

A
rr

ay
S

iz
e

E
xh

au
st

iv
e

To
po

lo
gi

ca
l

M
in

cu
t

To
po

/E
xh

M
in

/E
xh

E
xh

au
st

iv
e

To
po

lo
gi

ca
l

M
in

cu
t

4 1394432 1611008 1394176 1.16 1.00 0.45 0.39 0.45
5 1107712 1624320 1394176 1.47 1.26 0.46 0.31 0.36
6 1116645 1116672 1116672 1.00 1.00 0.38 0.38 0.38
7 1065366 1096704 1065434 1.03 1.00 0.34 0.33 0.34
8 1065364 1072896 1065412 1.01 1.00 0.30 0.30 0.30
9 866254 1072896 1065411 1.24 1.23 0.32 0.26 0.26
10 820408 1072896 1065402 1.31 1.30 0.31 0.24 0.24
11 820392 1072896 1065405 1.31 1.30 0.28 0.21 0.22
12 820397 832492 1065398 1.01 1.30 0.26 0.25 0.20
13 786609 786651 786665 1.00 1.00 0.25 0.25 0.25
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JPEG Decoder (12 Pages) : Summary of Temporal Partitioning Algorithms
Execution Time Improvement Measured Array Activity
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3 1784064 1784064 2052864 1.00 1.15 0.53 0.53 0.46
4 1105920 1533696 1533696 1.39 1.39 0.64 0.46 0.46
5 1103104 1103104 1763328 1.00 1.60 0.52 0.52 0.32
6 1063424 1063553 1063424 1.00 1.00 0.45 0.45 0.45
7 1054720 1054720 1054720 1.00 1.00 0.39 0.39 0.39
8 820736 820736 820736 1.00 1.00 0.43 0.43 0.43
9 820736 820736 820736 1.00 1.00 0.39 0.39 0.39
10 820736 820736 820736 1.00 1.00 0.35 0.35 0.35
11 820736 820736 820736 1.00 1.00 0.32 0.32 0.32
12 786688 786688 786688 1.00 1.00 0.30 0.30 0.30
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B.3 Application Performance and Regimes of Operations

Application: Wavelet Encoder (30 pages) at CMB Size (L): 128 Kbits
Offchip Memory BW 8 bits per cycle Offchip Memory BW 4 bits per cycle
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3 5216132 1.55 3361264 56 139118 12148828 1.58 7667522 56 139101
4 4714690 1.51 3118522 56 152212 11264519 1.58 7139960 56 152202
5 4450734 1.70 2613368 64 165952 10957180 1.69 6468970 64 165937
6 2844115 1.51 1886421 79 241299 7449484 1.52 4891488 77 235570
7 2045417 1.59 1287266 95 250144 5653968 1.86 3039555 96 239953
8 2110170 1.89 1113940 97 191532 5432235 2.22 2451374 95 180803
9 1822222 2.01 906200 150 199424 4411124 2.21 1993188 153 179936
10 764194 1.39 548422 1989 223317 1721746 2.46 698994 505 0
11 806596 1.74 463235 1989 129525 1801941 3.63 496646 995 0
12 700322 1.80 389993 195 71744 1374081 3.52 390414 125 0
13 513147 1.50 341763 170 0 568007 1.66 341763 170 0
14 334641 1.22 275114 331 0 359655 1.31 275112 331 0
15 276170 1.01 272498 331 0 278754 1.02 272498 331 0
16 273362 1.00 272991 1701 0 273363 1.00 272994 1701 0
17 272510 1.00 272793 8160 0 272512 1.00 272793 8160 0
18 272484 1.00 272481 8119 0 272478 1.00 272485 8119 0
19 272229 1.00 272494 8119 0 272229 1.00 272496 8119 0
20 271951 1.00 272500 3978 0 271951 1.00 272500 3978 0
21 271966 1.00 272764 3978 0 271964 1.00 272766 3978 0
22 271967 1.00 272514 3978 0 271969 1.00 272514 3978 0
23 268152 1.00 268390 3855 0 268150 1.00 268392 7709 0
24 268161 1.00 268178 1401 0 268161 1.00 268175 1401 0
25 268137 1.00 268139 862 0 268138 1.00 267876 680 0
26 267830 1.00 267834 806 0 267828 1.00 267830 806 0
27 267374 1.00 267374 2657 0 267376 1.00 267374 1009 0
28 265672 1.00 265662 496 0 265670 1.00 265662 463 0
29 265674 1.00 265672 727 0 265673 1.00 265670 727 0
30 263305 1.00 263308 1 0 263305 1.00 263308 1 0
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Application: Wavelet Encoder (30 pages) at CMB Size (L): 256 Kbits
Offchip Memory BW 8 bits per cycle Offchip Memory BW 4 bits per cycle
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3 2267062 1.34 1692538 113 107986 4795857 1.43 3357634 113 107822
4 2153736 1.33 1615710 113 107224 4492198 1.47 3053244 113 107047
5 2009326 1.38 1455426 130 114178 4437910 1.62 2733989 130 113969
6 1238105 1.50 823543 194 133935 2637761 1.87 1410530 46 0
7 1017004 1.78 572392 129 0 2151584 3.76 572392 129 0
8 981699 1.82 538218 194 31974 1680184 3.07 548036 150 0
9 773102 1.61 481138 240 0 884999 1.84 481140 237 0
10 387984 1.33 291768 4051 0 412150 1.41 291770 4051 0
11 389162 1.34 291498 4051 0 400499 1.37 291498 4051 0
12 392106 1.37 287174 386 0 431400 1.50 287174 387 0
13 358524 1.25 286085 335 0 361836 1.26 286081 335 0
14 275708 1.00 275114 331 0 275708 1.00 275112 331 0
15 273379 1.00 272498 331 0 273379 1.00 272498 331 0
16 273362 1.00 272504 2061 0 273363 1.00 272500 2061 0
17 272510 1.00 272793 8182 0 272512 1.00 272793 7955 0
18 272484 1.00 272481 7939 0 272478 1.00 272485 7955 0
19 272229 1.00 272494 8101 0 272229 1.00 272496 14105 0
20 271951 1.00 272500 3970 0 271951 1.00 272500 4019 0
21 271966 1.00 272764 3970 0 271964 1.00 272766 4019 0
22 271967 1.00 272514 3970 0 271969 1.00 272514 4019 0
23 268154 1.00 268390 3889 0 268158 1.00 268392 13285 0
24 268161 1.00 268178 1809 0 268161 1.00 268175 1809 0
25 268137 1.00 268139 872 0 268138 1.00 268142 869 0
26 267834 1.00 267834 2302 0 267828 1.00 267830 813 0
27 267374 1.00 267374 2657 0 267376 1.00 267374 1024 0
28 265672 1.00 265662 521 0 265670 1.00 265662 463 0
29 265676 1.00 265672 716 0 265673 1.00 265670 727 0
30 263308 1.00 263308 1 0 263305 1.00 263308 1 0
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Application: Wavelet Encoder (30 pages) at CMB Size (L): 512 Kbits
Offchip Memory BW 8 bits per cycle Offchip Memory BW 4 bits per cycle
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3 1211836 1.20 1012716 182 43213 1530190 1.49 1025704 116 0
4 1084009 1.30 832682 178 20305 1412382 1.55 910469 120 0
5 1030598 1.33 776253 198 14565 1316788 1.53 858749 198 14565
6 646156 1.60 403171 389 42278 746448 1.80 415114 389 43814
7 515809 1.45 356634 391 16704 609932 1.70 359656 391 16704
8 566776 1.68 338086 389 16128 636002 1.85 343034 389 14848
9 508438 1.61 316004 613 18752 530000 1.65 322134 613 17216
10 291648 1.00 292084 4071 0 291648 1.00 291658 4951 0
11 291408 1.00 290994 4071 0 291406 1.00 291264 5556 0
12 286228 1.00 286926 617 0 286234 1.00 286729 601 0
13 286996 1.00 285600 457 0 286996 1.00 285632 457 0
14 277298 1.01 275110 330 0 277298 1.01 275112 330 0
15 273379 1.00 272518 330 0 273379 1.00 272498 330 0
16 273362 1.00 272468 2010 0 273363 1.00 272500 2051 0
17 272512 1.00 272788 8037 0 272512 1.00 272793 8037 0
18 272484 1.00 272483 8037 0 272486 1.00 272485 8037 0
19 272234 1.00 272496 21321 0 272237 1.00 272496 21321 0
20 271951 1.00 272505 4593 0 271951 1.00 272501 4593 0
21 271966 1.00 272768 11973 0 271964 1.00 272774 11973 0
22 271967 1.00 272516 7053 0 271969 1.00 272522 7053 0
23 268154 1.00 268390 3937 0 268158 1.00 268392 13285 0
24 268161 1.00 268175 1816 0 268161 1.00 268175 1816 0
25 268137 1.00 268142 865 0 268138 1.00 268142 865 0
26 267834 1.00 267828 4321 0 267828 1.00 267830 811 0
27 267374 1.00 267373 1783 0 267376 1.00 267376 10099 0
28 265672 1.00 265666 525 0 265670 1.00 265668 525 0
29 265678 1.00 265670 787 0 265673 1.00 265670 787 0
30 263308 1.00 263308 1 0 263305 1.00 263308 1 0
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Application: Wavelet Decoder (27 pages) at CMB Size (L): 512 Kbits
Offchip Memory BW 8 bits per cycle Offchip Memory BW 4 bits per cycle
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6 1148408 1.00 1148372 607 217932 2403425 1.03 2342876 607 217932
7 980786 1.02 960510 1081 270949 2153930 1.08 1988611 777 255306
8 1487126 1.20 1240614 389 284083 3958462 1.45 2728318 389 284083
9 2206230 1.19 1858326 209 268625 5278564 1.32 3983855 257 263435
10 705034 1.00 704838 745 250816 1490498 1.07 1392662 745 250816
11 1227581 1.71 717373 592 281904 2788108 2.19 1274650 100 47981
12 833456 1.25 668672 355 152101 1910062 2.30 829864 115 0
13 746804 1.38 540876 1373 38229 1159692 1.63 709996 1373 38229
14 306946 1.00 306770 4506 0 326274 1.06 306770 4645 0
15 311214 1.02 306430 5101 0 325758 1.06 306442 4043 0
16 310916 1.03 301962 4081 0 321499 1.06 301962 4043 0
17 311728 1.03 301272 6259 0 311854 1.04 301263 5634 0
18 301865 1.03 292126 4537 0 301865 1.03 292138 4172 0
19 301241 1.01 296991 6133 0 301936 1.02 296989 7440 0
20 291917 1.00 291921 7141 0 291923 1.00 291923 7139 0
21 291896 1.00 291897 14536 0 291896 1.00 291896 14535 0
22 305840 1.00 305846 8401 0 305840 1.00 305840 8429 0
23 305316 1.00 305314 16661 0 305318 1.00 305314 16599 0
24 305294 1.00 305295 32662 0 305295 1.00 305295 32681 0
25 347589 1.00 347586 34201 0 347586 1.00 347586 33197 0
26 422409 1.00 422391 45801 0 422387 1.00 422387 45114 0
27 262772 1.00 263090 1 0 262776 1.00 262776 1 0

Application: JPEG Decoder (12 pages) at CMB Size (L): 128 Kbits
Offchip Memory BW 8 bits per cycle Offchip Memory BW 4 bits per cycle
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3 2601363 1.11 2344879 1016 0 2601364 1.11 2344978 1016 0
4 2284720 1.04 2198540 1021 0 2284721 1.04 2198535 1021 0
5 1909577 1.07 1781305 996 0 1909578 1.07 1781218 996 0
6 1433361 1.00 1433547 8119 0 1433413 1.00 1433610 8119 0
7 1196440 1.00 1195987 8119 0 1196437 1.00 1196276 8119 0
8 849529 1.00 849427 8119 0 849530 1.00 849432 8119 0
9 848023 1.00 847877 7955 0 848028 1.00 847876 7955 0
10 848109 1.00 847853 8119 0 848112 1.00 847856 8119 0
11 838599 1.00 838461 10671 0 838598 1.00 838465 10671 0
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Application: JPEG Decoder (12 pages) at CMB Size (L): 256 Kbits
Offchip Memory BW 8 bits per cycle Offchip Memory BW 4 bits per cycle
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3 2156427 1.02 2106881 2031 0 2110341 1.00 2106876 2031 0
4 1867999 1.02 1823267 2021 0 1890064 1.04 1823260 2021 0
5 1535596 1.00 1535269 2031 0 1535411 1.00 1535270 2031 0
6 1228961 1.00 1228986 16155 0 1254282 1.02 1228994 16155 0
7 1118088 1.00 1117881 16155 0 1127598 1.01 1117876 16155 0
8 829698 1.00 829934 16155 0 839568 1.01 829931 16155 0
9 829314 1.00 829207 16237 0 839502 1.01 829204 16237 0
10 829264 1.00 829373 16155 0 838510 1.01 829368 16155 0
11 829135 1.00 829135 20384 0 829134 1.00 829134 20384 0

Application: JPEG Decoder (12 pages) at CMB Size (L): 512 Kbits
Offchip Memory BW 8 bits per cycle Offchip Memory BW 4 bits per cycle
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3 1945803 1.01 1922899 4081 0 1945804 1.01 1922900 4081 0
4 1670615 1.01 1648759 4081 0 1670616 1.01 1648760 4081 0
5 1269233 1.02 1246753 4081 0 1269234 1.02 1246754 4081 0
6 1152284 1.00 1152195 30013 0 1152288 1.00 1152210 30013 0
7 1078961 1.00 1078761 32637 0 1078964 1.00 1078764 32637 0
8 819862 1.00 819862 32637 0 819865 1.00 819865 32637 0
9 819847 1.00 819847 32637 0 819845 1.00 819845 32637 0
10 819830 1.00 819830 32637 0 819833 1.00 819833 32637 0
11 819815 1.00 819815 32701 0 819814 1.00 819814 32701 0
12 786631 1.00 786631 1 0 786628 1.00 786628 1 0
13 786631 1.00 786631 1 0 786630 1.00 786630 1 0
14 786632 1.00 786632 1 0 786636 1.00 786636 1 0
15 786634 1.00 786634 1 0 786636 1.00 786636 1 0
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Application: JPEG Encoder (13 pages) at CMB Size (L): 128 Kbits
Offchip Memory BW 8 bits per cycle Offchip Memory BW 4 bits per cycle
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2 14890717 2.68 5550276 128 34069 31532422 5.12 6155608 82 0
3 12115886 2.86 4232586 110 5693 25047772 5.43 4615362 118 5686
4 4677392 1.67 2808931 128 0 5836786 2.08 2809018 128 0
5 2088453 1.00 2083566 1377 0 2095592 1.01 2083515 1377 0
6 1288733 1.03 1253231 538 0 1288736 1.03 1253234 511 0
7 1348356 1.08 1253717 529 0 1348355 1.08 1253745 544 0
8 1308353 1.04 1253745 544 0 1308356 1.04 1253766 538 0
9 1308049 1.04 1253401 544 0 1308072 1.04 1253394 544 0
10 849891 1.00 849883 14597 0 849896 1.00 849882 14597 0
11 786495 1.00 786496 1 0 786492 1.00 786492 1 0

Application: JPEG Encoder (13 pages) at CMB Size (L): 256 Kbits
Offchip Memory BW 8 bits per cycle Offchip Memory BW 4 bits per cycle
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2 6981905 2.15 3243353 236 5074 11799863 3.54 3331760 216 0
3 5811477 1.84 3158453 213 5524 11090493 3.42 3244544 199 0
4 2872149 1.33 2155437 234 0 3007352 1.38 2173509 248 0
5 1587329 1.02 1559875 2657 0 1592267 1.02 1559874 2657 0
6 1164052 1.01 1148911 1021 0 1163771 1.01 1148910 1021 0
7 1203730 1.04 1160557 1016 0 1203727 1.04 1160560 1016 0
8 1197415 1.03 1157151 811 0 1197414 1.03 1157152 811 0
9 1189552 1.04 1146979 1021 0 1189554 1.04 1146980 1021 0
10 840694 1.00 840686 21977 0 840696 1.00 840691 21977 0
11 786495 1.00 786492 1 0 786496 1.00 786492 1 0

Application: JPEG Encoder (13 pages) at CMB Size (L): 512 Kbits
Offchip Memory BW 8 bits per cycle Offchip Memory BW 4 bits per cycle
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2 4039039 1.66 2435586 445 0 5862290 2.41 2435585 445 0
3 3508977 1.50 2338037 451 10151 4586612 1.93 2378752 388 0
4 2027431 1.23 1653857 511 0 2035353 1.23 1653832 511 0
5 1346633 1.00 1346609 5413 0 1346632 1.00 1346610 5413 0
6 1101715 1.00 1101068 2047 0 1101718 1.00 1101072 2102 0
7 1117291 1.01 1105008 2113 0 1117286 1.01 1105012 2058 0
8 1112879 1.01 1100595 2091 0 1112878 1.01 1100594 2047 0
9 1112567 1.01 1100285 2047 0 1112570 1.01 1100286 2102 0
10 831507 1.00 831499 44281 0 831505 1.00 831496 44281 0
11 786492 1.00 786492 1 0 786492 1.00 786492 1 0
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